
Early Release:Early Release:
Friend or Foe?Friend or Foe?

Travis SkareTravis Skare
Christos KozyrakisChristos Kozyrakis

WTW 2006WTW 2006

Computer Systems LabComputer Systems Lab
Stanford UniversityStanford University

http://http://tcc.stanford.edutcc.stanford.edu



22

Motivation for Early ReleaseMotivation for Early Release

Consider multiple transactions operating on a Consider multiple transactions operating on a 
long singlylong singly--linked listlinked list
A write to the head of the list can cause a A write to the head of the list can cause a 
transaction working towards the end to abort.transaction working towards the end to abort.

4 8 15 16 23

6

Violation



33

Early ReleaseEarly Release

Early release enables transactions to clear Early release enables transactions to clear 
individual elements from their read sets at any individual elements from their read sets at any 
time before commit.time before commit.
Other transactions writing to the address in the Other transactions writing to the address in the 
future will not cause a violation.future will not cause a violation.

4 8 15 16 23

6

No Violation



44

Early Release: BenefitsEarly Release: Benefits

Reduces violationsReduces violations
Missing an opportunity for release does not affect Missing an opportunity for release does not affect 
original program semantics original program semantics 

A programmer can write an entire program, then go A programmer can write an entire program, then go 
back and implement ER later to increase performance back and implement ER later to increase performance 
Similar to the process of fineSimilar to the process of fine--tuning transactions for tuning transactions for 
speed increasesspeed increases



55

Early Release: DrawbacksEarly Release: Drawbacks

Added programming complexityAdded programming complexity——similar in many similar in many 
cases to finecases to fine--grained lockinggrained locking

Missing a Release() doesnMissing a Release() doesn’’t cause race conditionst cause race conditions……
But adding too many can break correctnessBut adding too many can break correctness
Could be used as a compiler optimizationCould be used as a compiler optimization

Possible implementation overheadPossible implementation overhead
Further complications if release granularity differs from Further complications if release granularity differs from 
word length (e.g., cacheword length (e.g., cache--line granularity) line granularity) 



66

This StudyThis Study

Will implementing Early Release be beneficial inside Will implementing Early Release be beneficial inside 
a collection of data structures?a collection of data structures?

Linked ListLinked List
Hashtable Hashtable 
AVL TreeAVL Tree
BB--Tree Tree 
ArrayArray--based heap (priority queue)based heap (priority queue)

Variety of work sizes, benchmark settings Variety of work sizes, benchmark settings 
Code chosen to be beneficial to ERCode chosen to be beneficial to ER

If no gain here, unlikely to find gain in If no gain here, unlikely to find gain in ““realreal”” apps.apps.



77

MethodologyMethodology

Stanford TCC SystemStanford TCC System
11--32 Processors32 Processors
Variable workload in between transactionsVariable workload in between transactions

Kept small in resultsKept small in results
30% read, 35% add, 35% remove30% read, 35% add, 35% remove
6,000 element pre6,000 element pre--populationpopulation

Some affinity for keys that will be added/removed Some affinity for keys that will be added/removed 

88--byte random keys, integer data byte random keys, integer data 



88

LinkedLinked--List Example (FG)List Example (FG)
int List_Insert_FineGrain(LinkedList *list, string searchKey, int data){

ListNode *insert = CreateNode(search, data);
ListNode *prev = list->head, *cur=prev->next;

Lock(list->head->lock);
while(cur!=NULL){

Lock(cur->lock); // hand-over-hand locking (1)
if(searchKey<=cur->key){

insert->next=cur;
prev->next=insert;
Unlock(prev->lock);
Unlock(cur->lock);
return 1;

}
Unlock(prev->lock); // hand-over-hand locking (2)
prev=cur;
cur=cur->next;

}
insert->next=NULL;
prev->next=insert;
Unlock(prev->lock); // release last lock held
return 1;

}



99

LinkedLinked--List Examples (TM/ER)List Examples (TM/ER)
int List_Insert_EarlyR(LinkedList *list, string searchKey, int data){

ListNode *insert = CreateNode(search, data);
ListNode *prev=list->head, *cur=prev->next;

while(cur!=NULL){
// &prev->next has RS bits set by access (“Lock”)
if(searchKey<=cur->key){

insert->next=cur;
prev->next=insert;
TCC_Release(&prev->next);
TCC_Release(&insert->next);
return 1;

}
TCC_Release(&prev->next); // release unused element

// compare to Unlock()
prev=cur;
cur=cur->next;

}
insert->next=NULL;
prev->next=insert;
TCC_Release(&prev->next); // compare to Unlock
TCC_Release(&insert->next); // but would be correct without ER
return 1;

}



1010

Results: Linked ListResults: Linked List

““SequentialSequential”” data structure data structure –– single point of entry, single point of entry, 
single path through datasingle path through data
ER does help here ER does help here –– beats out even FG locking beats out even FG locking 
due to lock/unlock overheadsdue to lock/unlock overheads

Linked List

0

10

20

30

40

50

60

8 16 32 8 16 32 8 16 32 8 16 32

TM TM+ER CG FG

%
 o

f S
eq

ue
nt

ia
l T

i
Release
Violation
Useful

64+?



1111

Results: Results: HashtableHashtable

Most parallelizable data structure Most parallelizable data structure –– statistically statistically 
transactions operate on different buckets transactions operate on different buckets 

256 Buckets used in trials256 Buckets used in trials

ER rarely helps here: ER rarely helps here: ““nanaïïveve”” TM approach is TM approach is 
even ~1% faster and rivals FG codeeven ~1% faster and rivals FG code

Hash Table

0

5

10

15

20

25

30

35

40

45

8 16 32 8 16 32 8 16 32 8 16 32

TM TM+ER CG FG

%
 o

f S
eq

ue
nt

ia
Ti

m
Release
Violation
Useful



1212

Results: ArrayResults: Array--based heapbased heap

NaNaïïve implementation (though concurrent ones exist)ve implementation (though concurrent ones exist)
High contention over a few elementsHigh contention over a few elements
Early release enhances system scalabilityEarly release enhances system scalability
Violations still occur (bubbleViolations still occur (bubble--up, etc)up, etc)

Array-based Heap

0
10
20
30
40
50
60
70
80
90

100

8 16 32 8 16 32 8 16 32 8 16 32

TM TM+ER CG FG

%
 o

f S
eq

ue
nt

ia
l T

I

Release
Violation
UsefulScalability?



1313

Results: AVL TreeResults: AVL Tree

There are still violations in the ER caseThere are still violations in the ER case
Cannot use ER when balancing the tree, etc.Cannot use ER when balancing the tree, etc.

ER does show some benefit, especially in scalabilityER does show some benefit, especially in scalability
For less stressful workloads, ER not so beneficial.For less stressful workloads, ER not so beneficial.

AVL Tree

0

5

10

15

20

25

30

35

40

45

8 16 32 8 16 32 8 16 32 8 16 32

TM TM+ER CG FG

%
 o

f S
eq

ue
nt

ia
l T

i

Release
Violation
Useful



1414

Results: BResults: B--TreeTree

Very Parallelizable Very Parallelizable 
We still see some violations with splitting, rotationsWe still see some violations with splitting, rotations

Cannot use ER in these casesCannot use ER in these cases
Not many violations to reduce from the TM caseNot many violations to reduce from the TM case

B-Tree

0

5

10

15

20

25

30

35

40

8 16 32 8 16 32 8 16 32 8 16 32

TM TM+ER CG FG

%
 o

f S
eq

ue
nt

ia
l T

i
Release
Violation
Useful



1515

ConclusionsConclusions

Studied effects of Early Release on five structuresStudied effects of Early Release on five structures
No performance boost for parallel structures No performance boost for parallel structures 

HashtableHashtable, Trees, Trees
Should generalize to most userShould generalize to most user--level application codelevel application code

There are applications where ER has advantagesThere are applications where ER has advantages
Heap, rough performance counters, etcHeap, rough performance counters, etc
ScalabilityScalability
But programmer could use better structures, nesting, etc.But programmer could use better structures, nesting, etc.

Also consider programming complexityAlso consider programming complexity


