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1 Introduction
Transactional Memory (TM) [9] has the potential to simplifyconcurrency management by supporting parallel tasks (trans-

actions) that appear to execute atomically and in isolation. There is already a significant body of work on programming
language constructs for transactional memory [7, 6, 5, 3, 1,2]. Nevertheless, there still exists little consensus on several
constructs, particularly those motivated by performance optimizations.

In this paper, we study a set of data structure algorithms to evaluate the ease-of-use and performance benefits of theearly
release (ER)construct [8, 5]. Early release allows a transaction to remove a data address from its transactional read-set
long before it commits. Once an address has been released, other transactions can write to this address without generating a
conflict with the releasing transaction. The programmer or acompiler must guarantee that early release of an address is safe:
removing the address from the read-set should not violate the overall application atomicity and consistency. The tradeoff
with early release is obvious: on one hand, removing addresses from the read-set reduces the probability of conflicts that
incur expensive long stalls or rollbacks. On the other hand,there is an additional burden to guarantee that early release is safe
for a particular address, regardless of any other code that may be executing in parallel. Therefore, if a programmer manually
applies early release, she must be extremely careful about when, where, and with which address early release is used.

Previous studies have used a single data structure algorithm (linked list) to conclude that various forms of early release can
be a particularly useful programming construct for performance optimization of transactional programs [8, 4]. In thispaper,
we study five data structure algorithms and rewrite their transactional memory versions to use early release. Our observations
are as follows: from the point of view of performance, early release provides a significant benefit only for highly sequential
data structures such as a linked list or array-based heap. For concurrent data structures such as hash tables and trees (AVL
trees and B-trees), there is no significant performance advantage from early release, even for write-intensive workloads with
significant rollback penalties. From the ease-of-use pointof view, we demonstrate with code examples that the complexity
of manually using early release is often similar to that of using fine-grain locks. Therefore, unlike previous work, our results
suggest that early release is not a particularly useful construct for user-level programming with transactional memory systems.
Of course, early release may still be useful to an optimizingcompiler that is able to automatically identify when it is safe and
profitable to use in transactional code.

2 Methodology
We ran transaction-based code on an execution-driven simulator for a CMP that follows the TCC architecture [11]. TCC

provides transactional memory using lazy conflict detection to provide non-blocking guarantees. Read-set and write-set
tracking is at word granularity. The CMP includes up to 32 cores with private L1 caches (32 KBytes, 1-cycle access) and
private L2 caches (256 KBytes, 12-cycle access). The read-set and write-set of the transactions in the studied algorithms
fit in the processor caches, hence there is no overhead for overflows and virtualization. The processors communicate overa
16-byte, split-transaction bus. All non-memory instructions in our simulator have a CPI of one, but we model all detailsin
the memory hierarchy for loads and stores, including inter-processor communication.

We added an early release instruction to the base TCC model. The instruction takes a word address and removes it from
the transaction read-set. If the word is in the L1 cache, the early release instruction executes in one clock cycle, otherwise it



takes 12 cycles. TCC tracks read-sets at word granularity which helps with the ER implementation. However, early release
is difficult to implement consistently in other hardware TM systems that use cache line granularity. In such systems, since an
early release instruction provides a word address, it is notsafe to release the entire cache line. Alternatively, we candefine an
early release instruction that releases an address range. Since the range may not always be aligned to cache line boundaries,
TM systems that track state at cache line granularity would still experience difficulties.

We used a number of data structure algorithms for our evaluation (linked list, array-based heap, hash table, AVL tree,
and B-tree of degree 5). Such data structures are interesting because they include significant parallelism, they are mostly
pointer-based, they are regular enough for a programmer to master, and they can be used to create workloads with varying
conflict frequencies or transaction sizes. While transactional versions for most of these data structures have been presented
before, we contribute new versions with early release. For each data structure, we constructed the following benchmarkcode.
First, we prepopulate the data structure with 6,000 elements 1. For all structures but the heap, the key for the elements is a
randomly-generated 8-character string. For the heap, the keys are randomly generated integers. Then, we perform a series
of data structure accesses. To create workloads with frequent conflicts that favor early release, we use the following mix of
accesses: 35% insertions of new elements, 35% deletions of existing elements (after searching for them), and 30% reads of
elements (after searching for them). A transaction includes one access followed by 400 cycles of work on the retrieved data.
The amount of work per transaction makes for a high rollback penalty, further benefiting early release.

We coded our benchmarks in C using a simple inlined API to define transaction boundaries and early release of addresses.
We also coded the same benchmarks using both coarse-grain (CG) and fine-grain (FG) locks for comparison purposes. The
coarse-grain case uses a single lock during the data structure access, but releases the lock during the additional work.The
fine-grained case uses per-node locks to expose more concurrency in data structure accesses. The lock-based code ran on a
version of the simulator that has the same resources as the TCC version but uses regular cache coherence and multiprocessor
synchronization. For both transactional and non-transactional code, we ran simulations using 1 to 32 processors. For brevity,
we present the results for 8, 16, and 32 processors. Larger processor counts generate the highest conflict frequency, but
including some smaller counts provides insights into scaling. Results are presented in Figure 1 as execution time, normalized
to sequential execution (represented by 100%). Lower bars are better. We break down execution time to useful (regular
instructions and cache stalls), violation (time wasted on transactions that rollback), and overhead due to early release (ad-
ditional instructions). We found that the overhead of earlyrelease instructions is insignificant for all benchmarks (less than
1%), hence the corresponding bar is practically invisible in all cases.

Even though our results are measured on a particular hardware TM system, we believe that the conclusions can be gener-
alized. While other hardware or software systems may have higher rollback overheads compared to TCC, we have artificially
increased the cost of rollbacks by introducing a significantamount of work per data structure access. In a software TM
system, one could call early release once per object insteadof once per word, hence reducing the overhead due to additional
instructions [8]. However, we found that no workload exhibits significant overhead due to the early release instructions. The
coding complexity arguments are equally applicable for allTM systems regardless of the exact API used. On the other hand,
if early release is applied automatically by a compiler, there is no coding complexity visible to the programmer.

3 Linked List
The linked list data-structure is not optimal for parallel accesses, as it arranges elements in a single list and search takes

O(N) steps to access. The coarse-grain lock (CG) code for linked list accesses (not shown) simply adds a set ofLock and
Unlock statements around the sequential code. Similarly, the original TM code (not shown) simply addsbegin xaction
andend xaction around the sequential access code and the additional work per access. The TM and CG code is easy to
write given the sequential code.

Figures 2 and 3 show the code for linked list insertion with fine-grain lock (FG) and TM with early release respectively
(TM+ER). The code for deletions is similar. The FG code holdsa lock on the current node as it scans the list to ensure correct
insertion. Locks are acquired and released in a carefulhand-over-handprocess to make sure that there is no point at which
no lock is held (current and next locks overlap). The TM+ER code is similar, but usesRelease instead ofUnlock and
there is no need forLock statements (addresses are inserted in the read-set and write-set automatically on loads and stores)2.
Overall, the complexity of developing FG and TM+ER code is similar. Misplacing or misusing aRelease statement is

1We also performed experiments with larger pre-populations(e.g., 60,000 elements). The results show similar trends, so we omit them for brevity.
2Thebegin xaction andend xaction statements are outside of the insert function. They also enclose the code for the extra work per element.
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Figure 1: Execution time for the five data structures workloa ds for different approaches: transactions
(TM), early release (TM+ER), coarse-grain locks (CG), and fi ne-grain locks (FG). The configuration is
8/16/32 processors, 400 cycles of work per access, and 6,000 elements per data structure before timing
starts.

as easy as misplacing or misusing anUnlock. Unlike with locks, forgetting an early release statement has no correctness
implications. However, having an extra one, using the wrongaddress, or using it too early can lead to incorrect code.

As pointed out by an anonymous reviewer, “the early release code does not maintain transactional consistency if a searchis
performed on a linked list and the key is not found, since thisleaves the entire list absent from the read set. Non-serializability
can result if there are concurrent insertions. For example,thread A checks list 1 for X, and inserts Y in list 2 if not found;
thread B checks list 2 for Y, and inserts X in list 1 if not found. Transactional semantics say that either X or Y should
be inserted. However, early release allows both X and Y to endup in the lists. Both the early release and fine-grained
lock version are thus notcomposable.” This observation provides further evidence on the dangers of using early release
in a manual manner. It also indicates that any automated use of early release by a compiler cannot be applied as a local
optimization. The global atomicity behavior of the application must be taken into account. Hence, early release may be
difficult to use within library code.

Figure 1 shows the execution time of the four versions of the linked list code. The CG code allows overlapping of the
additional per-access work, but no concurrency on the list.The FG code leads to 2.9x better performance in the 16-processor
case. Since threads operate on different parts of the long list, they only occasionally block each other when one thread



inserts as the other tries to scan through. Nevertheless, FGis limited by the instruction overhead and cache misses on lock
acquires and releases. The TM code suffers from frequent violations. Transactions that scan towards the end of the list are
likely to be rolled back by insertions or deletions towards the front as all the list pointers end up in their read-set. Even
so, TM is 2.5x faster than CG code in the 16-processor case, which has similar complexity, and is only marginally slower
than FG code. Early release allows transactions to have the minimal possible read-set (two elements) and leads to the best
performance. TM+ER eliminates violation overhead and offers a 1.5x speedup over simple TM. Looking at how the two
TM versions scale, we begin to see higher violation overheadin the 32-processor case for TM. Hence, we surmise that early
release would become increasingly important as we scale TM to larger processor counts for data-structures like linked lists.
Note, however, that this is a best case scenario for TM+ER. Ifthe workload is less write-intensive, conflicts are less frequent
and less expensive, and the advantage of TM+ER over ER is quickly reduced.

4 Array-Based Heap
Due to space reasons, we do not present any of the code for the array-based heap. The heap exhibits the properties

of the linked list taken to an extreme. Again, elements are arranged in a single sequence, but now we also have frequent
element swapping throughout the heap on updates. Due to these bubble-up operations, violations are very frequent for the
transactional versions with such a write-intensive workload. Just like the linked list case, the FG and TM+ER code for the
heap attempts to hold a lock for two elements or include in theread-set two elements. The two algorithms have similar
structure and almost identical complexity.

Figure 1 shows the execution time of the four versions of the heap code. Again, for a highly sequential structure with
a write-intensive workload, TM+ER leads to significant performance benefits over TM (2.8x with 16 processors). Again, a
workload with less insertions or deletions exhibits smaller differences. Nevertheless, FG is actually 50% faster thanTM+ER.
Early release eliminates many, but not all, violations for heap updates, which are very write-intenstive. Notice that for both the
linked list and the heap, the maximum speedup we achieve withthe 16-processor CMP is less than 7. The two data-structures
are not well-suited for parallel accesses, particularly aswe scale the number of processors in the system. Excluding the FG
code, no other version scales well with more processors.

5 AVL Tree
AVL trees are balanced binary trees that search inO(logN) time. Multiple threads can operate in parallel on different

branches. Significant interference is only observed on rotations for rebalancing. Even in that case, we typically have to rotate
only a sub-tree, so most threads are not affected. The CG and TM codes are again simple updates from the sequential code.
The TM has a small read-set in most cases, as it only touches a single branch.

Figures 4 and 5 show the code for AVL tree insertion with fine-grain lock (FG) and TM with early release (TM+ER).
The code for deletions is similar. The FG lock holds a lock to the immediate parent of the point of insertion. As in the
case of the linked list, locks are acquired and released in anoverlapped, hand-over-hand manner. If a rotation is necessary, a
coarser-grain lock is acquired for the whole sub-tree. The TM+ER releases all nodes but the current parent as it scans down
the branch using again an overlapped release process. Again, the FG and TM+ER version have very similar complexity.

Figure 1 shows the execution time of the four versions of the AVL tree code. Again, CG can only overlap additional
work; all operations to the tree are serialized. The other three versions of the code, TM, FG, and TM+ER, perform and scale
similarly. Despite the overhead of lock acquisition, FG hasa performance advantage over the TM versions. Even though
early release does eliminate some rollbacks, it does not provide a significant advantage over TM (less than 15% improvement
is observed). Most rollbacks are due to subtree rotations that are difficult to avoid in both TM and TM+ER.

6 B-Tree and Hash Table
Due to space limitations, we do not present any of the code forthe B-tree or the hash table. Much like the AVL tree, the

B-tree allows for fast searches and concurrency across branches with minimum interference. The B-tree code is similar to
the AVL tree in all cases, but properly adjusted to the degreeand nature of the tree. The CG and TM code are trivial while
the FG and TM+ER code requires careful locking or releasing as we scan through the tree. Figure 1 shows that the B-tree
performance results are similar to the AVL results. In this case, rollbacks due to rotations are much less frequent, as the
balancing requirement is relaxed and the tree nodes hold multiple pieces of data. Due to the small number of violations, we
do not notice a visible performance advantage for early release. Interestingly, the TM code is even faster than the FG code



that suffers from lock acquisition overheads, while the TM code does not experience significant overheads due to violations.
The hash table is the most concurrent data structure of all inthe group we studied. Searches are very fast and interference

is unlikely. As there are 256 bins, two threads/transactions rarely work on the same bin. Again, the CG and TM code is
trivial. In this case, however, the FG code is also simple as we only lock a bin at a time, as opposed to the individual elements
within the bin (as in the linked list case). Figure 1 shows that TM, TM+ER, and FG perform nearly identically. Early release
does not help, as we rarely have two transactions working on the same linked list.

7 Conclusions
The results in Figure 1 show that even for the very write-intensive workloads we studied, early release provides insignifi-

cant performance improvement (or no improvement at all) over simple, coarse-grain transactions for the data structures that
scale well in parallel systems (trees and hash tables). On the other hand, for linear data-structures like linked-listsand array-
based heaps, early release can significantly reduce the overhead due to violations. We have also shown through specific code
examples that the complexity of early release can be similarto that of fine-grain locks. While missing early release statements
do not affect correctness, a misplaced or additional early release is as bad as a misplaced or missing lock/unlock statement
and may lead to atomicity breaches. Hence, instead of applying early release on linear data structures like linked-lists and
heaps, the programmer is probably better off switching to a more concurrent data structure and using simple transactions.

Overall, our analysis suggests that early release is not a particularly useful construct for user-level programming with trans-
actional memory. While our conclusions apply only to the workloads we studied, they suggest that the added programming
complexity is not worth the limited performance boost from early release. Moreover, if it is difficult to use early release and
extract performance benefits with regular data structure code, it is unlikely that it will be sufficiently useful with more com-
plicated code. Coarse-grain transactions, potentially with nesting support [10], are sufficient to achieve good performance
with the simple code that programmers expect from transactional memory.

On the other hand, there are certain cases where early release can provide significant performance advantages, as shown
by the linked-list and heap workloads. Hence, early releasemay still be a useful to an optimizing compiler that is able to
automatically identify when it is safe and profitable to use in transactional code.
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1 int List_Insert_FineGrain(LinkedList *list, string searchKey, int data){
2 ListNode *insert = CreateNode(search, data);
3 ListNode *prev = list->head, *cur=prev->next;
4
5 Lock(list->head->lock);
6 while(cur!=NULL){
7 Lock(cur->lock);
8 if(searchKey<=cur->key){
9 insert->next=cur;

10 prev->next=insert;
11 Unlock(prev->lock);
12 Unlock(cur->lock);
13 return 1;
14 }
15 Unlock(prev->lock);
16 prev=cur;
17 cur=cur->next;
18 }
19 insert->next=NULL;
20 prev->next=insert;
21 Unlock(prev->lock);
22 return 1;
23 }

Figure 2: Fine-grain (FG) locking code for linked list inser t.

1 int List_Insert_TCC_EarlyRelease(LinkedList *list, string searchKey, int data){
2 ListNode *insert = CreateNode(search, data);
3 ListNode *prev=list->head, *cur=prev->next;
4
5 while(cur!=NULL){
6 if(searchKey<=cur->key){
7 insert->next=cur;
8 prev->next=insert;
9 Release(&prev->next);

10 Release(&insert->next);
11 return 1;
12 }
13 Release(&prev->next);
14 prev=cur;
15 cur=cur->next;
16 }
17 insert->next=NULL;
18 prev->next=insert;
19 Release(&prev->next);
20 Release(&insert->next);
21 return 1;
22 }

Figure 3: TM with early (TM+ER) for linked list insert.



1 AVLTree_Insert_FG(AvlTree *tree, string key, int data){
2 Lock(tree->root);
3 AVLTree_Insert_FG_Helper(tree->root, key, data);
4 }
5
6 AVLTree_Insert_FG_Helper(Node *current, string key, int data){
7 if(key==current->key){
8 Unlock(current->Lock);
9 return;

10 } else if(key<current->key){
11 if(current->left==NULL){
12 current->left=CreateNode(key,data);
13 Unlock(current->lock);
14 return;
15 } else{
16 Node *left=current->left;
17 Lock(left->lock);
18 Unlock(current->lock);
19 AVLTree_Insert_FG_Helper(left,key,data);
20 Balance(left);
21 }
22 } else {
23 if(current->right==NULL){
24 current->right=CreateNode(key,data);
25 Unlock(current->lock);
26 return;
27 } else{
28 Node *right=current->right;
29 Lock(right->lock);
30 Unlock(current->lock);
31 AVLTree_Insert_FG_Helper(right,key,data);
32 Balance(right);
33 }
34 }
35 }

Figure 4: Fine-grain (FG) locking code for AVL tree insert.



1 // Can avoid a wrapper function by calling the inner function directly.
2 AVLTree_Insert_EarlyRelease(AvlTree *tree, string key, int data){
3 AVLTree_Insert_ER_Helper(tree->root, key, data);
4 }
5
6 AVLTree_Insert_ER_Helper(Node *current, string key, int data){
7 if(key==current->key){
8 return;
9 } else if(key<current->key){

10 if(current->left==NULL){
11 cur->left=CreateNode(key,data);
12 Release(current->left);
13 return;
14 } else{
15 Node *left=current->left;
16 Release(current);
17 AVLTree_Insert_FG_Helper(left,key,data);
18 Balance(left);
19 }
20 } else {
21 if(cur->right==NULL){
22 cur->right=CreateNode(key,data);
23 Release(current->lock);
24 return;
25 } else{
26 Node *right=current->right;
27 Release(current);
28 AVLTree_Insert_FG_Helper(right,key,data);
29 Balance(right);
30 }
31 }
32 }

Figure 5: TM with early release (TM+ER) for AVL tree insert.


