
April 15 2008 Thesis Defense Talk

ATLAS
Software Development Environment
for Hardware Transactional Memory

Sewook Wee

Computer Systems Lab
Stanford University

2

The Parallel Programming Crisis

 Multi-cores for scalable performance
 No faster single core any more

 Parallel programming is a must, but still
hard
 Multiple threads access shared memory
 Correct synchronization is required

 Conventional: lock-based synchronization
 Coarse-grain locks: serialize system
 Fine-grain locks: hard to be correct

3

Alternative:
Transactional Memory (TM)
 Memory transactions [Knight’86][Herlihy & Moss’93]

 An atomic & isolated sequence of memory accesses
 Inspired by database transactions

 Atomicity (all or nothing)
 At commit, all memory updates take effect at once
 On abort, none of the memory updates appear to take

effect

 Isolation
 No other code can observe memory updates before

commit

 Serializability
 Transactions seem to commit in a single serial order

4

Advantages of TM

 As easy to use as coarse-grain locks
 Programmer declares the atomic region
 No explicit declaration or management of locks

 As good performance as fine-grain locks
 System implements synchronization
 Optimistic concurrency [Kung’81]
 Slow down only on true conflicts (R-W or W-W)
 Fine-grain dependency detection

 No trade-off between performance &
correctness

5

Implementation of TM

 Software TM [Harris’03][Saha’06][Dice’06]

 Versioning & conflict detection in software
 No hardware change, flexible
 Poor performance (up to 8x)

 Hardware TM [Herlihy & Moss’93]
[Hammond’04][Moore’06]

 Modifying data cache hardware
 High performance
 Correctness: strong isolation

6

Software Environment for HTM

 Programming language [Carlstrom’07]
 Parallel programming interface

 Operating system
 Provides virtualization, resource management, …
 Challenges for TM

 Interaction of active transaction and OS

 Productivity tools
 Correctness and performance debugging tools
 Build up on TM features

7

Contributions

 An operating system for hardware TM

 Productivity tools for parallel
programming

 Full-system prototyping & evaluation

8

Agenda

 Motivation

 Background

 Operating System for HTM

 Productivity Tools for Parallel Programming

 Conclusions

9

TCC: Transactional
 Coherence/Consistency
 A hardware-assisted TM

implementation
 Avoids overhead of software-only

implementation
 Semantically correct TM implementation

 A system that uses TM for coherence
& consistency
 Use TM to replace MESI coherence

 Other proposals build TM on top of MESI
 All transactions, all the time

10

TCC Execution Model
CPU 0 CPU 1 CPU 2

Commit

Arbitrate

Execute

Code

Commit

Arbitrate

Execute

Code

Undo

Execute

Code

ld 0xccccRe-

Execute

Code

...

ld 0x1234

ld 0x5678

...

ld 0xcccc
...

...

0xcccc
0xcccc

st 0xcccc

...

ld 0xabdc

ld 0xe4e4

...

 See [ISCA’04] for details

ti
m

e

11

Processor

W7:0

TAG

(2-ported)

Data

Cache

Violation
Load/Store

Address

Snoop

Control

Commit Address

Commit

Control

Commit

Data

Store

Address

FIFO

Register

Checkpoint

Commit Bus

Refill Bus

Commit

Address In

Commit

Data Out

Commit

Address Out

DATA

(single-ported)
R7:0V

CMP Architecture for TCC

Transactionally Read Bits:

ld 0xdeadbeef

Transactionally Written Bits:

st 0xcafebabe

Conflict Detection:
Compare incoming
address to R bits

Commit:
Read pointers from Store
Address FIFO, flush
addresses with W bits set

 See [PACT’05] for details

12

ATLAS Prototype Architecture

 Goal
 Convinces a proof-of-concept of TCC
 Experiments with software issues

Main memory & I/O

Coherent bus with commit token arbiter

CPU0

TCC
Cache

CPU1

TCC
Cache

CPU2

TCC
Cache

CPU7

TCC
Cache

…

13

Mapping to BEE2 Board

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

Arb-
iter

switch
memory

14

Agenda

 Motivation

 Background

 Operating System for HTM

 Productivity Tools for Parallel Programming

 Conclusions

15

What should we do
if OS needs to run
in the middle of

transaction?

Challenges in OS for HTM

16

Challenges in OS for HTM

 Loss of isolation at exception
 Exception info is not visible to OS until commit
 I.e. faulting address in TLB miss

 Loss of atomicity at exception
 Some exception services cannot be undone
 I.e. file I/O

 Performance
 OS preempts user thread in the middle of

transaction
 I.e. interrupts

17

Practical Solutions

 Performance
 A dedicated CPU for operating system
 No need to preempt user thread in the

middle of transaction

 Loss of isolation at exception
 Mailbox: separate communication layer

between application and OS

 Loss of atomicity at exception
 Serialize system for irrevocable exceptions

18

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

CPU

TCC
cache

CPU

TCC
cache

switch

Arb
iter

switch
memory

CPU

$ M

CPU

$ M

switch

CPU

$ M Arb
iter

switch
memory

CPU

$ M

CPU

$ M

switch

CPU

$ M

CPU

$ M

switch

CPU

$ M

CPU

$ M

switch

Architecture Update

Linux

proxy
kernel

19

P

$M

P

$M

Application CPU

$Mailbox

OS CPU

$ Mailbox

Operating system BootloaderATLAS core

Initial
context

TM application

Execution overview (1) -
 Start of an application

 ATLAS core
 A user-level program runs on OS CPU
 Same address space as TM application
 Start application & listen to requests from apps

 Initial context
 Registers, PC, PID, …

20

P

$M

P

$M

Application CPU

$Mailbox

OS CPU

$ Mailbox

ATLAS core

Exception
Information

TM application

Execution overview (2) -
 Exception

 Proxy kernel forward the exception information to OS CPU
 Fault address for TLB misses
 Syscall number and arguments for syscalls

 OS CPU services the request and returns the result
 TLB mapping for TLB misses
 Return value and error code for syscalls

Operating system

Exception
Result

Proxy kernel

21

Operating System Statistics

 Strategy: Localize modifications
 Minimize the work needed to track main stream kernel

development

 Linux kernel (version 2.4.30)
 Device driver that provides user-level access to

privilege-level information
 ~1000 lines (C, ASM)

 Proxy kernel
 Runs on application CPU
 ~1000 lines (C, ASM)

 A full workstation for programmer’s perspective

22

System Performance

 Total execution time scales
 OS time scales, too

23

Scalability of OS CPU

 Single CPU for operating system
 Eventually, it will become a bottleneck as

system scales
 Multiple CPUs for OS will need to run SMP

OS

 Micro-benchmark experiment
 Simultaneous TLB miss requests
 Controlled injection ratio
 Looking for the number of application CPUs

that saturates OS CPU

24

Experiment results

 Average TLB miss rate = 1.24%
 Start to congest from 8 CPUs

 With victim TLB (Average TLB miss rate = 0.08%)
 Start to congest from 64 CPUs

25

Agenda

 Motivation

 Background

 Operating System for HTM

 Productivity Tools for Parallel Programming

 Conclusions

26

Challenges in Productivity Tools
for Parallel Programming
 Correctness

 Nondeterministic behavior
 Related to a thread interleaving

 Need to track an entire interleaving
 Very expensive in time/space

 Performance
 Detailed information of the performance

bottleneck events
 Light-weight monitoring

 Do not disturb the interleaving

27

Opportunities with HTM

 TM already tracks all reads/writes
 Cheaper to record memory access

interleaving

 TM allows non-intrusive logging
 Software instrumentation in TM system
 Not in user’s application

 All transactions, all the time
 Everything in transactional granularity

Thesis Defense Talk

Tool 1: ReplayT
Deterministic Replay

29

Deterministic Replay

 Challenges in recording an interleaving
 Record every single memory access
 Intrusive
 Large footprint

 ReplayT’s approach
 Record only a transaction interleaving
 Minimally overhead: 1 event per transaction
 Footprint: 1 byte per transaction (thread ID)

30

ReplayT Runtime

Log Phase Replay Phase

Commit

time time

LOG:

T0

T1

T2 T2

Commit

T0

T1

T2 T2

Commit protocol
replays logged
commit order

T0 T1 T2

31

Runtime Overhead

 Minimal time & space overhead

B: baseline
L: log mode
R: replay mode

 Average on 10
benchmarks
 7 STAMP,

3 SPLASH/SPLASH2

 Less than 1.6%
overhead for logging

 More overhead in replay
mode
 longer arbitration time

 1B per 7119 insts.

Thesis Defense Talk

Tool 2. AVIO-TM
Atomicity Violation Detection

33

Atomicity Violation

 Problem: programmer breaks an atomic
task into two transactions

ATMDepositATMDeposit::
 atomic {atomic {
 t = Balancet = Balance
 Balance = t + $100 Balance = t + $100
 }}

 atomic {atomic {
 Balance = t + $100Balance = t + $100
 }}

ATMDepositATMDeposit::
 atomic { atomic {
 t = Balancet = Balance
 }} directDepositdirectDeposit::

 atomic {atomic {
 t = Balancet = Balance
 Balance = t + $1,000Balance = t + $1,000
 }}

34

Atomicity Violation Detection

 AVIO [Lu’06]
 Atomic region = No unserializable interleavings
 Extracts a set of atomic region from correct runs
 Detects unserializable interleavings in buggy runs

 Challenges of AVIO
 Need to record all loads/stores in global order

 Slow (28x)
 Intrusive - software instrumentation
 Storage overhead

 Slow analysis
 Due to the large volume of data

35

My Approach: AVIO-TM

 Data collection in deterministic rerun
 Captures original interleavings

 Data collection at transaction granularity
 Eliminate repeated loggings for same address

(10x)
 Lower storage overhead

 Data analysis in transaction granularity
 Less possible interleavings faster extraction
 Less data faster analysis
 More accurate with complementary detection tools

Thesis Defense Talk

Tool 3. TAPE
Performance Bottleneck

Monitor

37

TM Performance Bottlenecks

 Dependency conflicts
 Aborted transactions waste useful cycles

 Buffer overflows
 Speculative states may not fit into cache
 Serialization

 Workload imbalance

 Transaction API overhead

38

Dependency Conflicts

Write XWrite X

Useful Arbitration Commit Abort

Time

T0

Read XRead XT1

Useful cycles are wasted in T1

39

TAPE on ATLAS

 TAPE [Chafi, ICS2005]

 Light weight runtime monitor for performance
bottlenecks

 Hardware
 Tracks information of performance bottleneck

events

 Software
 Collects information from hardware for events
 Manages them through out the execution

40

TAPE Conflict

 Commit X
from Thread 1

T0

Read X

Object: X
Writing Thread: 1
Wasted cycles: 82,402

Restart

Read X

Read PC: 0x100037FC

Per Thread
 Read PC: 0x100037FC
 …
 Occurrence: 34

Per Transaction

41

Read_PC Object_Addr Occurence Loss Write_Proc Read in source line
10001390 100830e0 30 6446858 1 ..//vacation/manager.c:134
10001500 100830e0 32 1265341 3 ..//vacation/manager.c:134
10001448 100830e0 29 766816 4 ..//vacation/manager.c:134
10005f4c 304492e4 3 750669 6 ..//lib/rbtree.c:105

TAPE Conflict Report

 Now, programmers know,
 Where the conflicts are
 What the conflicting objects are
 Who the conflicting threads are
 How expensive the conflicts are

 Productive performance tuning!

42

Runtime Overhead

 Base overhead
 2.7% for 1p

 Overhead from real
conflicts
 More CPU

configuration has
higher chance of
conflicts

 Max. 5% in total

43

Conclusion

 An operating system for hardware TM
 A dedicated CPU for the operating system
 Proxy kernel on application CPU
 Separate communication channel between them

 Productivity tools for parallel programming
 ReplayT: Deterministic replay
 AVIO-TM: Atomicity violation detection
 TAPE: Runtime performance bottleneck monitor

 Full-system prototyping & evaluation
 Convincing proof-of-concept

44

RAMP Tutorial

 ISCA 2006 and ASPLOS 2008

 Audience of >60 people (academia & industry)
 Including faculties from Berkeley, MIT, and UIUC

 Parallelized, tuned, and debugged apps with ATLAS
 From speedup of 1 to ideal speedup in a few minutes
 Hands-on experience with real system

“most successful hands-on tutorial
in last several decades”

- Chuck Thacker (Microsoft Research)

45

Acknowledgements
 My wife So Jung and our baby (coming soon)
 My parents who have supported me for last 30

years
 My advisors: Christos Kozyrakis and Kunle

Olukotun
 My committee: Boris Murmann and Fouad A.

Tobagi
 Njuguna Njoroge, Jared Casper, Jiwon Seo, Chi Cao

Minh, and all other TCC group members
 RAMP community and BEE2 developers
 Shan Lu from UIUC
 Samsung Scholarship
 All of my friends at Stanford & my Church

