
April 15 2008 Thesis Defense Talk

ATLAS
Software Development Environment
for Hardware Transactional Memory

Sewook Wee

Computer Systems Lab
Stanford University



2

The Parallel Programming Crisis

 Multi-cores for scalable performance
 No faster single core any more

 Parallel programming is a must, but still
hard
 Multiple threads access shared memory
 Correct synchronization is required

 Conventional: lock-based synchronization
 Coarse-grain locks: serialize system
 Fine-grain locks: hard to be correct
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Alternative:
Transactional Memory (TM)
 Memory transactions [Knight’86][Herlihy & Moss’93]

 An atomic & isolated sequence of memory accesses
 Inspired by database transactions

 Atomicity (all or nothing)
 At commit, all memory updates take effect at once
 On abort, none of the memory updates appear to take

effect

 Isolation
 No other code can observe memory updates before

commit

 Serializability
 Transactions seem to commit in a single serial order



4

Advantages of TM

 As easy to use as coarse-grain locks
 Programmer declares the atomic region
 No explicit declaration or management of locks

 As good performance as fine-grain locks
 System implements synchronization
 Optimistic concurrency [Kung’81]
 Slow down only on true conflicts (R-W or W-W)
 Fine-grain dependency detection

 No trade-off between performance &
correctness
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Implementation of TM

 Software TM [Harris’03][Saha’06][Dice’06]

 Versioning & conflict detection in software
 No hardware change, flexible
 Poor performance (up to 8x)

 Hardware TM [Herlihy & Moss’93]
[Hammond’04][Moore’06]

 Modifying data cache hardware
 High performance
 Correctness: strong isolation
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Software Environment for HTM

 Programming language [Carlstrom’07]
 Parallel programming interface

 Operating system
 Provides virtualization, resource management, …
 Challenges for TM

 Interaction of active transaction and OS

 Productivity tools
 Correctness and performance debugging tools
 Build up on TM features
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Contributions

 An operating system for hardware TM

 Productivity tools for parallel
programming

 Full-system prototyping & evaluation
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TCC: Transactional
          Coherence/Consistency
 A hardware-assisted TM

implementation
 Avoids overhead of software-only

implementation
 Semantically correct TM implementation

 A system that uses TM for coherence
& consistency
 Use TM to replace MESI coherence

 Other proposals build TM on top of MESI
 All transactions, all the time



10

TCC Execution Model
CPU 0 CPU 1 CPU 2
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 See [ISCA’04] for details
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Processor
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CMP Architecture for TCC

Transactionally Read Bits:

ld 0xdeadbeef

Transactionally Written Bits:

st 0xcafebabe

Conflict Detection:
Compare incoming
address to R bits

Commit:
Read pointers from Store
Address FIFO, flush
addresses with W bits set

 See [PACT’05] for details
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ATLAS Prototype Architecture

 Goal
 Convinces a proof-of-concept of TCC
 Experiments with software issues

Main memory & I/O

Coherent bus with commit token arbiter
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Mapping to BEE2 Board
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What should we do
if OS needs to run
in the middle of

transaction?

Challenges in OS for HTM
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Challenges in OS for HTM

 Loss of isolation at exception
 Exception info is not visible to OS until commit
 I.e. faulting address in TLB miss

 Loss of atomicity at exception
 Some exception services cannot be undone
 I.e. file I/O

 Performance
 OS preempts user thread in the middle of

transaction
 I.e. interrupts
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Practical Solutions

 Performance
 A dedicated CPU for operating system
 No need to preempt user thread in the

middle of transaction

 Loss of isolation at exception
 Mailbox: separate communication layer

between application and OS

 Loss of atomicity at exception
 Serialize system for irrevocable exceptions
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P

$M

P

$M

Application CPU

$Mailbox

OS CPU

$ Mailbox

Operating system BootloaderATLAS core

Initial
context

TM application

Execution overview (1) -
                  Start of an application

 ATLAS core
 A user-level program runs on OS CPU
 Same address space as TM application
 Start application & listen to requests from apps

 Initial context
 Registers, PC, PID, …
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P
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Application CPU
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OS CPU
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ATLAS core

Exception
Information

TM application

Execution overview (2) -
           Exception

 Proxy kernel forward the exception information to OS CPU
 Fault address for TLB misses
 Syscall number and arguments for syscalls

 OS CPU services the request and returns the result
 TLB mapping for TLB misses
 Return value and error code for syscalls

Operating system

Exception
Result

Proxy kernel
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Operating System Statistics

 Strategy: Localize modifications
 Minimize the work needed to track main stream kernel

development

 Linux kernel (version 2.4.30)
 Device driver that provides user-level access to

privilege-level information
 ~1000 lines (C, ASM)

 Proxy kernel
 Runs on application CPU
 ~1000 lines (C, ASM)

 A full workstation for programmer’s perspective
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System Performance

 Total execution time scales
 OS time scales, too
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Scalability of OS CPU

 Single CPU for operating system
 Eventually, it will become a bottleneck as

system scales
 Multiple CPUs for OS will need to run SMP

OS

 Micro-benchmark experiment
 Simultaneous TLB miss requests
 Controlled injection ratio
 Looking for the number of application CPUs

that saturates OS CPU
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Experiment results

 Average TLB miss rate = 1.24%
 Start to congest from 8 CPUs

 With victim TLB (Average TLB miss rate = 0.08%)
 Start to congest from 64 CPUs
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Challenges in Productivity Tools
for Parallel Programming
 Correctness

 Nondeterministic behavior
 Related to a thread interleaving

 Need to track an entire interleaving
 Very expensive in time/space

 Performance
 Detailed information of the performance

bottleneck events
 Light-weight monitoring

 Do not disturb the interleaving
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Opportunities with HTM

 TM already tracks all reads/writes
 Cheaper to record memory access

interleaving

 TM allows non-intrusive logging
 Software instrumentation in TM system
 Not in user’s application

 All transactions, all the time
 Everything in transactional granularity



Thesis Defense Talk

Tool 1: ReplayT
Deterministic Replay
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Deterministic Replay

 Challenges in recording an interleaving
 Record every single memory access
 Intrusive
 Large footprint

 ReplayT’s approach
 Record only a transaction interleaving
 Minimally overhead: 1 event per transaction
 Footprint: 1 byte per transaction (thread ID)
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ReplayT Runtime

Log Phase Replay Phase

Commit

time time

LOG:

T0

T1

T2 T2

Commit

T0

T1

T2 T2

Commit protocol
replays logged
commit order

T0 T1 T2
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Runtime Overhead

 Minimal time & space overhead

B: baseline
L: log mode
R: replay mode

 Average on 10
benchmarks
 7 STAMP,

3 SPLASH/SPLASH2

 Less than 1.6%
overhead for logging

 More overhead in replay
mode
 longer arbitration time

 1B per 7119 insts.



Thesis Defense Talk

Tool 2. AVIO-TM
Atomicity Violation Detection
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Atomicity Violation

 Problem: programmer breaks an atomic
task into two transactions

ATMDepositATMDeposit::
    atomic {atomic {
        t = Balancet = Balance
    Balance = t + $100    Balance = t + $100
    }}

    atomic {atomic {
        Balance = t + $100Balance = t + $100
    }}

ATMDepositATMDeposit::
  atomic {  atomic {
          t = Balancet = Balance
    }} directDepositdirectDeposit::

    atomic {atomic {
        t = Balancet = Balance
        Balance = t + $1,000Balance = t + $1,000
    }}





34

Atomicity Violation Detection

 AVIO [Lu’06]
 Atomic region = No unserializable interleavings
 Extracts a set of atomic region from correct runs
 Detects unserializable interleavings in buggy runs

 Challenges of AVIO
 Need to record all loads/stores in global order

 Slow (28x)
 Intrusive - software instrumentation
 Storage overhead

 Slow analysis
 Due to the large volume of data
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My Approach: AVIO-TM

 Data collection in deterministic rerun
 Captures original interleavings

 Data collection at transaction granularity
 Eliminate repeated loggings for same address

(10x)
 Lower storage overhead

 Data analysis in transaction granularity
 Less possible interleavings  faster extraction
 Less data  faster analysis
 More accurate with complementary detection tools



Thesis Defense Talk

Tool 3. TAPE
Performance Bottleneck

Monitor
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TM Performance Bottlenecks

 Dependency conflicts
 Aborted transactions waste useful cycles

 Buffer overflows
 Speculative states may not fit into cache
 Serialization

 Workload imbalance

 Transaction API overhead
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Dependency Conflicts

Write XWrite X

Useful Arbitration Commit Abort

Time

T0

Read XRead XT1

Useful cycles are wasted in T1
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TAPE on ATLAS

 TAPE [Chafi, ICS2005]

 Light weight runtime monitor for performance
bottlenecks

 Hardware
 Tracks information of performance bottleneck

events

 Software
 Collects information from hardware for events
 Manages them through out the execution
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TAPE Conflict

 Commit X 
from Thread 1

T0

Read X

Object: X
Writing Thread: 1
Wasted cycles: 82,402

Restart

Read X

Read PC: 0x100037FC

Per Thread
  Read PC: 0x100037FC
  …
  Occurrence: 34

Per Transaction
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Read_PC   Object_Addr  Occurence Loss      Write_Proc    Read in source line
10001390  100830e0     30        6446858   1             ..//vacation/manager.c:134
10001500  100830e0     32        1265341   3             ..//vacation/manager.c:134
10001448  100830e0     29         766816   4             ..//vacation/manager.c:134
10005f4c  304492e4      3         750669   6             ..//lib/rbtree.c:105

TAPE Conflict Report

 Now, programmers know,
 Where the conflicts are
 What the conflicting objects are
 Who the conflicting threads are
 How expensive the conflicts are

 Productive performance tuning!
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Runtime Overhead

 Base overhead
 2.7% for 1p

 Overhead from real
conflicts
 More CPU

configuration has
higher chance of
conflicts

 Max. 5% in total
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Conclusion

 An operating system for hardware TM
 A dedicated CPU for the operating system
 Proxy kernel on application CPU
 Separate communication channel between them

 Productivity tools for parallel programming
 ReplayT: Deterministic replay
 AVIO-TM: Atomicity violation detection
 TAPE: Runtime performance bottleneck monitor

 Full-system prototyping & evaluation
 Convincing proof-of-concept
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RAMP Tutorial

 ISCA 2006 and ASPLOS 2008

 Audience of >60 people (academia & industry)
 Including faculties from Berkeley, MIT, and UIUC

 Parallelized, tuned, and debugged apps with ATLAS
 From speedup of 1 to ideal speedup in a few minutes
 Hands-on experience with real system

“most successful hands-on tutorial
in last several decades”

- Chuck Thacker (Microsoft Research)
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