System Challenges and
Opportunities for
Transactional Memory

JaeWoong Chung

Computer System Lab
Stanford University

My thesis Is about

s Computer system design that help leveraging
hardware parallelism

m Transactional memory (TM) for easy parallel
programming

s Contribution
s Challenges to building an efficient and practical TM system
= Opportunities to use TM beyond parallel programming

Multli Core Processors

m= No more freguency race
= The era of multi cores

m Parallel programming is not easy
s Split a sequential task into multiple sub tasks

Performance

“Mainboard ’RA"M’”’";'H;;"E"'l“iﬁ??;"f_ ce

4 -:Té

jm
m"i"‘
fg-ga;'z‘_

o .._‘
ache 5'I 2K LZ"Cur.h

aggggg -
a:ﬁ

ph{r“ ‘al Inf

||

."ﬂi.;:l-_{yper-Tmngpﬂg_rg??bysicul Inte! f cer

Pentiurh Pentlum il Core Duo
(1993) (2000) (2006)

Locking Is hard to use

m Synchronize access to shared data

m Coarse-grain locking | ’:Object —— : Reference
= Easy to program
= The other task is blocked TaSkl’ l Task2

rf—\
m Fine-grain locking '5’
High concurrency
Hard to use
Dead lock, priority inversion, ...
High locking overhead

Object reference graph (e.g. Java and C++)

4

Transactional Memory

Transactional Memory

m Atomic and isolated execution of instructions
= Atomicity : All or nothing
= |solation : No intermediate results

= Programmer
= A transaction encloses instructions
= |ogically sequential execution of transactions

TX Begin TX Begin

/I Instructions /I Instructions
/] for Taskl /] for Task?2

TX_End TX_End

= [M system

= Transactions are executed in parallel without conflict
= If conflict, one of them is aborted and restarts

TM Example

TXZ’ ’R
.

-
N

S/ w

]
-5
m Data versioning

s At TX Begin, save register values
= At write, save old memory values

m Conflict detection
= Read-set and write-set per transaction
= Conflict detection with set comparison

TM Benetfits

Logically sequential execution of transactions

Optimistic concurrency control for parallel transaction
execution

No dead lock, priority inversion, and convoying
= TM system handles pathological cases

Composability

Error Recovery

TM System Design

s Many proposals in hardware and software
s Hardware acceleration for TM is crucial for performance
m HTM is 2 ~3 times faster than STM
s Correctness : strong isolation

= Hardware TM
= In the beginning
m register checkpoint
= At memory access
m Set read/write bits per cache line
m Buffer new values in cache or log old values
= Conflict detection
m With cache coherence protocol
m With transaction validation protocol

Hardware TM Example

= TM hardware = M programs

Tx1
Core 1 ’ Regs’

R

Tx1 Tx?2
R ‘ ’ ’
ADDR : DATA : R : ADDR : DATA: R : W ’ ’

XXX 2 || XXX || R\
3 a4

XXX §) XXX || 0

XXX 5 || xxx 0 \ \
0 W ii_ W

L1 cache L1 cache ’ ’

Load dad 5 I

Memory

Challenges and Opportunities

How to build efficient TM system tuned for common
case?

How to build practical TM system to deal with uncommon
case?

Can we use TM to support system software?

Can we use TM to improve other important system
metrics?

Contributions

m Challenges to building TM systems
s Common case behavior of parallel programs
m Extract architectural parameters for efficient TM system design

= TM virtualization
m Overcome the limitation of TM hardware

s Opportunity for system beyond parallel programming
= Multithreading for dynamic binary translation
m Guarantee correctness of DBT

= Support for reliability, security, and fast memory snapshot
m Improve important system metrics other than performance

Outline

Software parallelization : a major issue for performance
Transactional memory

Challenges to building TM systems
s Common case behavior of parallel programs
m M virtualization

Opportunities for systems beyond parallel programming
s Multithreading for dynamic binary translation
m Support for reliability, security, and fast memory snapshot

Conclusion

Challenges to
Building TM Systems

Challenge 1.
Common Case Behavior of
Parallel Programs

Goal
= Understand the common case behavior of TM programs

Few TM programs available
= More TM programs now but for research purpose

Few efficient TM systems as development tool

“chicken & egg problem”

Inferring Transactions in
Multithread Programs

s Analyze existing parallel programs

= Assumption : the inherent parallelism remains regardless of
programming tools

s Mapping programming primitives to transactions

Programmine prmitve lir2nsacioR pRmiuve

Lock/Unlock Begin/End

Parallel _For Begin/End

Parallel Applications

m Different domains and different language

[S2RQUagES Applications

Java MolDyn, MonteCarlo, RayTracer, Crypt, LUFact,
Series, SOR, SparseMatmult, SPECjbb2000, PMD,
HSQLDB

Pthread Apache, Kingate, Bp-vision, Localize, Ultra Tic Tac
Toe, MPEG2, AOL Server

ANL Barnes, Mp3d, Ocean, Radix, FMM, Cholesky,
Radiosity, FFT, Volrend, Water-N2, Water-Spatial

OpenMP APPLU, Equake, Art, Swim, CG, BT, IS

Key Metrics of TM Programs

Measure the key metrics of TM programs
= Use the metrics to make suggestions for TM designs

Key meties Architecivralfparameiers

Transaction length TM primitive overhead

Read-/write-set size Buffer size

Write-set to length ratio Transaction commit/abort
overhead

Frequency of nesting & I/O in | Support for nesting and system
transactions calls

Transaction Length

m Number of instructions executed In transaction

Application

Length in Instiuctions

Avg

50th %

O5th % .

Java average

5949

149

4256

13519488

Pthreads average

879

805

1056

22501

ANL average

256

114

712

16782

Observation : Up to 95% of transactions < 5000 instructions
= Suggestion : Light-weight transactional primitives

s Observation : Rare but long transactions

= Suggesion : Transaction over context-switching

=

%)
()
)
>
o]
X
£
]
N 10
n
o)
%))
e
@®
Q
o

o
=

Read-/Write-Set Size

m Bytes of data read/written by transaction

Pthreads

80th

Percentile of Transactions

Write Set Size in Kbytes
o
il

+ ANL

X Java Pthreads

=
o
|

|_\
|

80th

Percentile of Transactions

Observation : 98% transactions <16KB read-set and

<6KB write set

m Suggestion : 32K L1 cache is sufficient

Observation : Few very large transaction > 32K
m Suggestion : Need for buffer space virtualization

Outline

Software parallelization : a major issue for performance
Transactional memory

Challenges to building TM systems
s Common case behavior of parallel programs
= TM virtualization

Opportunities for systems beyond parallel programming
s Multithreading for dynamic binary translation
m Support for reliability, security, and fast memory snapshot

Conclusion

Challenge 2 .
TM Virtualization

Problem

= Limited hardware resources tuned for common cases
m E.g. buffer size for 99% transactions

= How do we cover uncommon cases as well?

Cache as buffer for transactional data
s What if cache capacity is exhausted? => space virtualization

What If a transaction Is interrupted?
= Time virtualization

What If transactions are nested deeply?
s Depth virtualization

XTM: eXtended TM

m Goals

= Virtualize TM space, time, and depth at low HW cost
s Completely transparent to user SW

= Minimize interference with coexisting HW transactions

m Assumption
= Overflows, interrupts, and deep nesting are rare

m Approach
Transactional data and metadata in virtual memory
Using virtual memory support in OS

Data versioning & conflict detection at page granularity
Similar to page-based software DSM systems

XTM Overview

m Basic operation
= On HTM overflow, rollback and restart in SW mode
= At the first access, create a copy of original (master) page
m Change the address mapping to the copy (private page)
m Transactional data in private page, committed data in master
page
= At commit, make the private page the new master page
= All orchestrated by the operating system (no HW)

m Conflict detection
s Use TLB shoot-downs to gain exclusive page access

m Hardware requirement
= Overflow exception

Timeline

3
HTM Overflow
"
Xtn Write

3
Xtn Read
3

Commit

XTM Example

Page table pointer

Per-Tx
Page table
For Level O

Master
page table

™

Private
Copy

XTM Metadata

W

Hardware Acceleration

m XTM-g
= Gradual page-by-page switching

» Reduce the switch overhead from hardware mode to software
mode

= A portion of transactional data in private pages, the rest in the
cache

s Hardware requirement : OV(overflow) bit in page table

s XTM-e

= Additional buffer for overflowed read/write bits
= Reduce false conflict at page granularity
s Hardware requirement : Eviction buffer

Time Virtualization

= Interrupt and context-switch procedure

NETVZE

Interrupt
Approach
]]
>

Young Switch to
transction? software mode
_ J

Yes 1 Yes 1

Wait for short Abort
transaction to finish young transaction
U J _J

Performance Analysis

e f
=
5
:
i
f
E
z

[0.019%6] [0.2696] [39.29%6] [60.3%6] [60.8%]

s XTM causes no cost for applications without overflow

s XTM-g presents a good cost/performance tradeoff point

m 20% faster to 50% slower than a fully-hardware solution
28

Outline

Software parallelization : a major issue for performance
Transactional memory

Challenges to building TM systems
m Common case behavior of parallel programs
m TM virtualization

Opportunities for systems beyond parallel programming
= Multithreading for dynamic binary translation
m Support for reliability, security, and fast memory snapshot

Conclusion

Opportunities for
Systems beyond

Parallel Programming

Opportunity 1 :

Dynamic Binary Translation

m DBT

= Binary code is translated in run-time
= PIN, Valgrind, DynamoRIO, StarDBT, etc

O) DBT Tool O)

Original J — Translated
(3 Binary DBT Framework Binary

m DBT use cases
= Translation on new target architecture
= JIT optimizations in virtual machines
= Binary instrumentation
m Profiling, security, debugging, ...

Example: Dynamic Information Flow
Tracking (DIFT)

t = XX : /[untrusted data from network
taint(t) = 1,

Variables

swap taint(t), taint(ul); Taint bits D D D

u2 =ul;
taint(u2) = taint(ul);

m Track untrusted data
= A taint bit per memory byte
s Security policy uses the taint bit.
m E.g. no syscall with untrusted data

Problem :
DBT with Parallel Program

Thread 1 Thread2

—) swap t, ul;

u2 =ul; =

taint(u2) = taint(ul);<—=
—)y swap taint(t), taint(ul);

t ul uZ?

Variables | xx XXJ

LN N\/L Security

Taint bits [71 I Breach !

= Atomicity between original and instrumented
Instructions for correctness

How to Guarantee Atomicity?

s Easy but unsatisfactory solutions
= No multithreaded programs (StarDBT)
s Serialization (Valgrind)

s Hard solution : Locking
= |dea : Enclose original and instrumented instruction with lock
= Fine-grained locks
m locking overhead, convoying, limited scope of DBT
optimizations
Coarse-grained locks
m performance degradation
Lock nesting between app & DBT locks
m potential deadlock
Tool developers should be feature + multithreading experts

Transactional Memory for
Correctness of DBT

= |dea
= Original and instrumented instructions in a transaction

Thread 1 Thread2

TX Begin TX Begin

swap t, ul; u2 = uil,;

swap taint(t), taint(ul); taint(u2) = taint(ul);
TX_End TX_End

= Advantages
= Atomic execution
= High performance through optimistic concurrency
= Support for nested transactions

Granularity of Transaction
Instrumentation

Per instruction : short
= High overhead of executing TX_ Begin and TX_End
= Limited scope for DBT optimizations

Per basic block : long

= Amortizing the TX Begin and TX_ End overhead
s Easy to match TX_ Begin and TX_End

Per trace : longer
= Further amortization of the overhead
= Potentially high transaction conflict

Profile-based sizing : dynamic
= Optimize transaction size based on transaction abort ratio

Baseline Performance Results

ead (%)
U (<)}

- o o
y X X
|

S
o
>
o
]
)
N
©
£
£ S
o
2

Barnes Equake Fmm Radiosity Radix Swim Tomcatv Water Water-
spatial

m Software TM and DIFT on PIN

= 41 % overhead on the average
= Transaction at the DBT trace granularity

Hardware Acceleration

o)
o
X

SW Only

B Register
Checkpoint

B Reg. + HW
Signature

Full HW

—
S
©
©
v
£
S
)
>
6
©
)
N
=
£
S
o
Z

BarnesE quake FMMRadiosityRadix S wim TomcatvWater Water-
s patial

s Overhead reduction
= 28% with register checkpoint
m 12% with register checkpoint + hardware signature
= 6% with full hardware TM

Outline

Software parallelization : a major issue for performance
Transactional memory

Challenges to building TM systems
m Common case behavior of parallel programs
m TM virtualization

Opportunities for systems beyond parallel programming
s Multithreading for dynamic binary translation
= Support for reliability, security, and fast memory snapshot

Conclusion

Opportunity 2 :
Improving Other System Metrics

= TM hardware consists of
= Fine-grain data versioning HW
= Fine-grain access tracking HW
m Fast exception handlers

m Can use such HW for other purposes
= Reliability, Security, ...

m The benefits for SW

= Finer granularity (compared to VM-based approach)
s User-level event handling (compared to VM-based approach)
No instrumentation overhead (compared to DBT-based approach)

Simplified code (compared to DBT-based approach)
40

Outline for
TM Hardware Application

= Reliability
s Global & local checkpoints (data versioning)

m Security
= Fine-grain read/write barriers (address tracking)
= [solated execution (data versioning)

m Memory snapshet (data versioning)
= Concurrent garbage collector
= Dynamic memory profiler

Memory Snapshot

Read-only

= Snapshot SHEg:
= Read-only image

= Multiple regions -\ <—{ collector |
= Shared by multiple /[

threads

s Applications
= Service threads that
analyze memory in Toct]
parallel with app threads /[o
m Garbage collection,

memory profiling (heap &
stack), ...

< Garbage Collection >

42

TM Hardware = Snapshot

m [Feature correspondence
= TM metadata = track data written since snapshot
= TM versioning = storage for progressive snapshot
m Including virtualization mechanism
= TM conflict detection = catch errors
m \Writes to read-only snapshot

m Differences & additions
m Data versioning for single thread Vs. multiple thread
m Table to record snapshot regions

s Resulting snapshot system
m Fast: O(# CPUs) Scan (create) and O(1) write/read
= Small memory footprint : O(# memory locations written)

GC Overhead

u Stop
= Mark

- Reclaim
| Snapshot
== App

parallel GC snapshot GC| parallel GC snapshot GC

Runtime Overhead

vacation gzip

s Parallel GC: stop app threads & run GC threads
m 20% to 30% overhead for memory intensive apps

s Snapshot GC = GC is essentially free
m Fast : Stop app, take snapshot, then run GC & app concurrently
m Simple : +100 lines over parallel GC by Boehm
m Fundamentally simpler than any other concurrent GC

Conclusion

m Challenges to building TM systems
s Common case behavior of parallel programs
m Extract architectural parameters for efficient TM system design

= TM virtualization
m Overcome the limitation of TM hardware

s Opportunity for system beyond parallel programming
= Multithreading for dynamic binary translation
m Fix correctness issue for DBT

= Support for reliability, security, and fast memory snapshot
m Improve important system metrics other than performance

Acknowledgement

KyungHae, wife

Parents, brother, in-laws

Prof. Kozyrakis, advisor

Prof. Olukotun, associate advisor

Prof. Garcia-Molina

Prof. Saraswat

TCC group mates and research colleagues
Korean mafia

