
Chí Cao Minh
28 May 2008

  Uniprocessor systems hitting limits
  Design complexity overwhelming
  Power consumption increasing dramatically

  Instruction-level parallelism exhausted

  Solution is multiprocessor systems
  Simpler processor design (but many of them)

  Reduce power requirements

  Expose opportunity for thread-level parallelism

1

  Commonly achieved via lock-based parallel programs

  Unfortunately, parallel programming with locks is hard
  Option 1: Coarse-grain locks
▪  Simplicity at less concurrency

  Option 2: Fine-grain locks
▪  Better performance (maybe) at more complexity

2

3

6

1 4

3

9

8

7

Thread 1: insert 2 Thread 2: insert 10

4

6

1 4

3

9

8

7

Thread 1: insert 2 Thread 2: insert 10

5

6

1 4

3

9

8

7

Thread 1: insert 2 Thread 2: insert 5

  What is a transaction?
  Group of instructions in computer program:
  atomic { 
    if (x != NULL) x.foo(); 
    y = true; 
  }

  Required properties: Atomicity, Isolation, Serializability

  Key idea: Use transactions to build parallel programs
  Large atomic blocks simplify parallel programming
  Simplicity of coarse-grain locks with speed of fine-grain locks

6

  Life cycle of a transaction:

  Start

  Speculative execution (optimistic)

  Build read-set and write-set
▪  Write-set manages write versioning

  Commit
▪  Fine-grain R-W & W-W conflict detection

  Abort & rollback

7

Start

Commit
Failure

…
Read
…
Write
…

Success

Transaction

8

6

1 4

3

9

8

7

Thread 1: insert 2 Thread 2: insert 5
Read-set: Read-set:

Write-set: Write-set:1
6, 3, 1 6, 3, 4

4

9

6

1 4

3

9

8

7

Thread 1: insert 2 Thread 2: insert 0
Read-set: Read-set:

Write-set: Write-set:1
6, 3, 1 6, 3, 1

1

  TM can be implemented in hardware or software

  Hardware-based (HTM)
  [Herlihy 93], [Rajwar 02], [Hammond 04], [Moore 06]
  Strengths: high performance & predictable semantics

  Weaknesses: costly & inflexible

  Software-based (STM)
  [Shavit 95], [Herlihy 03], [Harris 03], [Saha 06], [Dice 06]
  Strengths: low-cost & flexible

  Weaknesses: low performance & unpredictable semantics

10

  Standard method to compare TM systems
  Each TM system evaluated with different apps
  How to pick the better of two HTMs?

  TM system that combines strengths of HTM and STM
  High-performance
  Flexibility

  Low-cost

  Predictable semantics

11

  STAMP: Benchmark suite for TM
  8 applications specifically for evaluating TM
  Comprehensive breadth and depth analysis

  Portable to many kinds of TMs
  Public release: http://stamp.stanford.edu 

  IEEE Intl. Symposium on Workload Characterization (IISWC) 2008

  Signature-Accelerated TM (SigTM): Hybrid TM
  Hardware acceleration of software transactions
  Fast, flexible, cost-effective, & predictable semantics

  Intl. Symposium on Computer Architecture (ISCA) 2007

12

  Background & Motivation

  STAMP: Benchmark suite for TM

  SigTM: Effective hybrid TM
  Fast, flexible, low-cost

  Predictable semantics

  Conclusions

13

  What is a benchmark?
  Program used to evaluate computer performance
  Help accelerate innovation in computer design

  Benchmarks for multiprocessors
  SPLASH-2 (1995), SPEComp (2001), PARSEC (2008)
  Not good for evaluating TM
▪  Regular algorithms without synchronization problems

  Benchmarks for TM systems
  Microbenchmarks from RSTMv3 (2006)
  STMBench7 (2007)
  Haskell applications by Perfumo et. al (2007)

14

  Breadth: variety of algorithms & app domains

  Depth: wide range of transactional behaviors

  Portability: runs on many classes of TM systems

15

RSTMv3 no yes yes Microbenchmarks

STMbench7 no yes yes Single program

Perfumo et al. no yes no Microbenchmarks;
Written in Haskell

  Breadth
  8 applications covering different domains & algorithms
  Applications not trivially parallelizable

  Depth
  Wide range of transactional behaviors
▪  Transaction length
▪  Read and write set size
▪  Contention amount

  Most spend significant execution time in transactions

  Portability
  Written in C with macro-based transaction annotations
  Works with HTM, STM, and hybrid TM

16

17

bayes Machine learning Learns structure of a Bayesian
network

genome Bioinformatics Performs gene sequencing

intruder Security Detects network intrusions

kmeans Data mining Implements K-means clustering

labyrinth Engineering Routes paths in maze

ssca2 Scientific Creates efficient graph representation

vacation Online transaction
processing

Emulates travel reservation system

yada Scientific Refines a Delaunay mesh

  Groups data into K clusters

  Possible applications:
  Biology: plant and animal classification
  WWW: analyze web traffic for patterns

18

Initial data Grouped data (K = 2)

19

Guess
centers

Analyze data

Compute adjust-
ments to centers

Update centers

Converged?
no

yes

Transaction

Privatization

  Emulates travel reservation system
  Similar to 3-tier design in SPECjbb2000

20

Kozyrakis

Olukotun

Manager

Reserve
Cancel
Update

Customers

Hotels

Flights

Cars

Client Tier Manager Tier Database Tier

Mitra

Osgood

21

Manager does
 cancelation

Get task?

reserve
Task kind?

Manager does
 reservation

Manager does
 update

cancel update

Done
no

yes

Transaction Transaction Transaction

bayes 60584 24 9 0.59 83%

genome 1717 32 2 0.14 97%

intruder 330 71 16 3.54 33%

kmeans 153 25 25 0.81 3%

labyrinth 219571 35 36 0.94 100%

ssca2 50 1 2 0.00 17%

vacation 3161 401 8 0.02 92%

yada 9795 256 108 2.51 100%

22

  First comprehensive benchmark suite for TM
  Meets breadth, depth, and portability requirements
  Useful tool for analyzing TM systems (including SigTM)

  Public release: http://stamp.stanford.edu 
  Early adopters:
▪  Industry: Microsoft, Intel, Sun, & more

▪  Academia: U. Wisconsin, U. Illinois, & more

  TL2-x86 STM

23

  Background & Motivation

  STAMP: Benchmark suite for TM

  SigTM: Effective hybrid TM
  Fast, flexible, low-cost

  Predictable semantics

  Conclusions

24

  HTM: HW does write versioning & conflict detection
  Advantages:
▪  High performance
▪  Predictable semantics

  Disadvantages:
▪  Expensive (e.g., requires cache modifications)
▪  Inflexible (e.g., fixed capacity for write versioning)

  STM: SW does write versioning & conflict detection
  Advantages:
▪  Low-cost
▪  Easy to change and evolve

  Disadvantages:
▪  High overhead
▪  Unpredictable semantics

25

  Hybrid hardware and software TM design
  Fast, flexible, cost-effective
  Predictable semantics

  Design approach:
  Start with software transactions → flexible & cost-effective

  Add hardware (“signatures”) to accelerate → fast
▪  Also provides predictable semantics

26

Write versioning HW SW SW

Conflict detection HW SW HW

  Program: atomically remove head of linked-list

27

ListNode n; 
atomic { 
  n = head; 
  if (n != null) { 

    head = head.next; 

  } 
} 

ListNode n; 
STMstart(); 
  n = STMread(&head); 
  if (n != null) { 
    ListNode t; 
    t = STMread(&head.next); 
    STMwrite(&head, t); 
  } 
STMcommit(); 

High-level Low-level
Compiler

  Called at transaction start → init transaction meta data

  Constant total cost per transaction
  Expensive only for short transactions

28

STMstart() { 
  checkpoint(); // used to rollback 
  other_initialization(); 
} 

  Called to read shared data → add to read-set

  Building read-set is expensive
  Total cost per transaction varies

  Locality of read accesses, size of read-set, transaction length

29

STMread(addr) { 

  if (addr in WriteSet) // get latest value 
    return WriteSet.getValue(addr); 

  ReadSet.insert(addr); 

  return *addr; 
} 

  Called to write shared data → add to write-set

  Total cost per transaction varies
  Locality of write accesses, size of write-set, transaction length

  Less cost than STMread (# reads ≥ # writes)

30

STMwrite(addr, val) { 
  WriteSet.insert(addr, val); 
} 

  Called at transaction end → atomically commit changes

  Expensive: scan read-set (1x); scan write-set (3x)

31

STMcommit() { 
  foreach (addr in WriteSet)   // write set scan 1 
    lock(addr); 
  foreach (addr in ReadSet)    // read set scan 
    validate(addr);            // someone wrote? 
  foreach (addr in WriteSet)   // write set scan 2 
    *addr = WriteSet.getValue(addr); 

  foreach (addr in WriteSet)   // write set scan 3 
    unlock(addr); 
} 

  Measured single-thread STM performance

  1.8x – 5.6x slowdown over sequential

  Hybrid TM should focus on STMread and STMcommit 
32

0.0

0.5

1.0

1.5

2.0

kmeans

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 t
o

se
qu

en
tia

l)

0

1

2

3

4

5

6

vacation

STMwrite

STMread

STMcommit

Busy

  Each HW thread has 2 HW signatures (read & write)
  Each signature implemented by a Bloom filter
▪  Fixed-size bit array with set of hash functions

  No other HW modifications (e.g., no extra cache bits)

  Operations on signature (Bloom filter): insert & lookup

33

0 1 2 3 hash(N) = N mod 4 

0 1 2 3insert(2) ‐> 

insert(6) ‐> aliasing 

lookup(2)  ‐> hit 

lookup(3)  ‐> miss 

lookup(10) ‐> false hit 

  How SigTM uses its signatures:
  Tx read/write → insert address into read/write signature
  Coherence messages → look up address in signature
▪  Enabled/disabled by software

  If lookup hits in signature, either:
  Trigger SW abort handler (conflict detection)
  NACK remote request (atomicity & isolation enforcement)

  Signatures may generate false conflicts
  Performance but not correctness issue
  Reduce with longer signatures & better hash functions

  With this HW, how does the SW change?
34

  No need to build SW read-set
  Replaced by read signature

  Read signature provides continuous validation
  Snoops coherence messages & any hits cause abort

35

SigTMread(addr) { 

  if (addr in WriteSet) // get latest value 
    return WriteSet.getValue(addr); 

  read_sig_insert(addr); // 1 instruction 
  return *addr; 
} 

  Read signature eliminates scan of read-set to validate
  Write signature eliminates locks

  Snoops coherence messages & NACKs any hits
  Two write-set scans instead of three

36

SigTMcommit() { 
  enable_write_sig_lookup(); 
  foreach (addr in WriteSet) // write set scan 1 
    fetch_exclusive(addr); 

  enable_write_sig_nack(); 
  foreach (addr in WriteSet) // write set scan 2 
    *addr = WriteSet.getValue(addr); 
  disable_write_sig_lookup(); 
} 

  Execution-driven simulation
  1–16 core x86 chip-multiprocessor with MESI coherence
  Supports HTM, STM, and SigTM

  Used STAMP benchmark suite for evaluation

  Three experiments:
  Does SigTM reduce the overhead of SW transactions?

  How fast is SigTM?
  How much hardware does SigTM cost?

37

  Measured single-thread performance on STM and SigTM

  SigTM effectively accelerates read & commit
38

0.0

0.5

1.0

1.5

2.0

STM SigTM

kmeans

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 t
o

se
qu

en
tia

l)

0
1
2
3
4
5
6

STM SigTM

vacation

Write

Read

Commit

Busy

  Measured speedup on 1–16 cores

  In general, SigTM faster than STM but slower than HTM

39

0 5 10 15

HTM SigTM STM

0

5

10

15

0 5 10 15

Sp
ee

du
p

Processor Cores

kmeans

0

5

10

15

0 5 10 15
Sp

ee
du

p
Processor Cores

vacation

  Measured performance drop as signatures get shorter

  Mesa

  Recommend 1024 bits for read sig, 128 bits for write sig

40

0.80 0.85 0.90 0.95 1.00

20481024 512 256 128 64 32

intruder kmeans vacation

0.80

0.85

0.90

0.95

1.00

20
48

10
24

51
2

25
6

12
8 64

32

N
or

m
al

iz
ed

 S
pe

ed
up

Write Signature Length (bits)

0.0
0.2
0.4
0.6
0.8
1.0

20
48

10
24

51
2

25
6

12
8 64

32

N
or

m
al

iz
ed

 S
pe

ed
up

Read Signature Length (bits)

  Background & Motivation

  STAMP: Benchmark suite for TM

  SigTM: Effective hybrid TM
  Fast, flexible, low-cost

  Predictable semantics

  Conclusions

41

  Two acceptable outcomes:
  T1 commits first; T1 uses only non-incremented n.val 
  T2 commits first; T1 uses only incremented n.val 

  Works correctly with lock-based synchronization
  Race-free program

42

ListNode n; 
atomic { 
  n = head; 
  if (n != null) 
    head = head.next; 
} 
// use n.val many times 

Thread 1
atomic { 
  ListNode n = head; 
  while (n != null) { 
    n.val++; 
    n = n.next; 
  } 
} 

Thread 2

  All STMs may give unexpected results
  T1 may use both old & new value after privatization

  Cause: Non-transactional accesses are not instrumented
  Non-Tx writes do not cause Tx to abort
  Tx commit not atomic with respect to non-Tx accesses

43

ListNode n; 
atomic { 
  n = head; 
  if (n != null) 
    head = head.next; 
} 
// use n.val many times 

Thread 1
atomic { 
  ListNode n = head; 
  while (n != null) { 
    n.val++; 
    n = n.next; 
  } 
} 

Thread 2

44

  Definition: Transactions isolated from non-Tx accesses

  HTM → inherent strong isolation
  Non-Tx cause coherence messages
  Conflict detection mechanism enforces strong isolation

  STM → supplemented strong isolation
  Additional annotations needed for non-Tx accesses

  Some can be optimized but still a source of overhead

  SigTM → inherent strong isolation
  Without additional instrumentation or overhead

  STMs have unpredictable results because:
  Non-Tx writes do not cause transactions to abort
  Tx commit not atomic with respect to non-Tx accesses

  Non-Tx writes cause SigTM to abort a transaction
  Coherence messages looked up in read signature
  Hits in read signature trigger transaction abort

  SigTM commit is atomic with respect to non-Tx accesses
  Write signature used to provide atomic writeback

  Coherence messages looked up in write signature
  Hits in write signature → NACK non-Tx accesses

45

  TM is promising for simplifying parallel programming

My contributions to the TM community:

  STAMP
  Comprehensive benchmark suite for TM
  Public release: http://stamp.stanford.edu 
  Early adopters: MSFT, Intel, U. Wisconsin, U. Illinois, & more 

  Signature-Accelerated TM (SigTM)
  Hardware acceleration of software transactions
  Fast, flexible, cost-effective, & predictable semantics
  Attractive design for industry

46

  Committee
  Advisor: Christos Kozyrakis
  Co-advisor: Kunle Olukotun
  Brad Osgood, Subhasish Mitra

  Family
  Chanh, Ling Ling, Lyly

  TCC research group
  Austen, Brian, JaeWoong, Jared, Martin, Nathan, Nju, Sewook, Tayo, Woongki
  Darlene Hadding, Teresa Lynn

  Joseph and Hon Mai Goodman

  Friends
  AAGSA, SVSA, & many more

47

