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Our New MULTICORE Overlords

• The free lunch for software developers is over
– No longer improving thread performance with 

new processors

• Chip Multiprocessors (CMP/Multicore) are here
– Improve performance by exploiting thread 

parallelism

To make programs faster, mortal programmers 
will try parallel programming…

M O T I V A T I O N
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Parallel Programming is Hard

• Thread level parallelism is great until we want 
to share data

• Fundamentally, it’s hard to work on shared 
data at the same time

– so we don’t—mutual exclusion via locks

• Locks have problems

– performance/correctness, fine/coarse tradeoff

– deadlocks and failure recovery

M O T I V A T I O N
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Transactional Memory (TM)

• Execute large, programmer-defined regions 
atomically and in isolation *Knight ’86, Herlihy & Moss ’93+

atomic {
x = x + y;

}

• Declarative

– No management of locks

• Optimistically executing in parallel gains 
performance

M O T I V A T I O N
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TM Example

M O T I V A T I O N

1
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3 4

Goal: Modify node 3 in a thread-safe way.
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TM Example

M O T I V A T I O N

2

3 4

1



7

TM Example

M O T I V A T I O N

3 4

1

2



8

TM Example

M O T I V A T I O N

3 4

1

2



9

TM Example

M O T I V A T I O N

3 4

1

2



10

TM Example
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TM Example

M O T I V A T I O N
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Locking prevents concurrency

Goals: Modify nodes 3 and 4 in a thread-safe way.



12

TM Example

M O T I V A T I O N
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Transaction A

READ:

WRITE:
Goal: Modify node 3 in a thread-safe way.
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TM Example
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TM Example
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TM Example

M O T I V A T I O N
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Transaction A

READ: 1, 2, 3

WRITE:  3

Transaction B

READ: 1, 2, 4

WRITE: 4

Goals: Modify nodes 3 and 4 in a thread-safe way.
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TM Example

M O T I V A T I O N
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Transaction A

READ: 1, 2, 3

WRITE:  3

Transaction B

READ: 1, 2, 4

WRITE: 4
WW conflicts

RW conflicts
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TM Example
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TM Example

M O T I V A T I O N
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WRITE: 3
WW conflicts

RW conflicts
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Guts of TM

• To build TM, you need…

B U I L D I N G   A N   H T M

Versioning

Where do you put the 
new x until commit?

Conflict Detection

How do you detect that 
reads/writes to x need to be 
serialized?

atomic {
x = x + y;

}

atomic {
x = x + y;

}

atomic {
x = x / 8;

}

T0 T1

Conflict Resolution

How do you enforce 
serialization when 
required?

T0 T1
x = x + y; x = x / 8;

x = x / 8;
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Hardware or Software TM?

• Can be implemented in HW or SW

• SW is slow

– Bookkeeping is expensive: 2-8x slowdown

• SW has correctness pitfalls

– Even for correctly synchronized code!

• Let’s use hardware for TM
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Challenges

1. What’s the best implementation in hardware?
• Many available options

2. What’s the right HW/SW interface?
• Changing software needs (OSs and Languages) 

• Changing parallel architectures 

T H E S I S
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Contributions

• Designed and compared HTM systems

• Extended one system to replace coherence 
and consistency with only transactions

• Devised a sufficient software/hardware 
interface for current and future OS/PL on TM

T H E S I S
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5 Years of My Life on One Slide

1. Motivation & Contributions

2. Building a TM system in hardware

3. An architecture with only transactions

4. What about the interface to software?

5. Conclusions

S I G N P O S T
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• Versioning: storing new values

• Eager: store new values in memory, old values 
in undo log

• Commits fast, Aborts slow

• Lazy: store new values in writebuffer
• Aborts fast, Commits slow

B U I L D I N G   A N   H T M

Versioning
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Conflict Detection

• Conflict Detection: detecting RW/WW 
conflicts

– Pessimistic: detect conflicts on cache misses

• Avoids useless work, but may cause deadlock/livelock 
and prevents some serializable schedules

– Optimistic: wait until end of transaction

• Forward progress can be guaranteed, but some wasted 
work [explain forward progress]
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Versioning+Conflict Detection

• EP, LP, LO

– Not Eager-Optimistic

• Note: conflict resolution depends on other 
two choices
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Building a Lazy-Optimistic HTM

Lazy Versioning
– Need to keep new versions (and read-set tracking) until 

commit

– Already have a cache—let’s put it there!

Optimistic Conflict Detection
– Need to detect conflicts at commit time

– Coherence protocol already detects sharing

Conflict Resolution
– The first committer wins

– Simple and guarantees forward progress
Aggressive Conflict Resolution

B U I L D I N G   A N   H T M
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LO HTM Specifics

CPU 1

Bus & Snoop Control

Commit Bus

Refill Bus

On-chip L2 Cache

Bus Arbiters

. . .

CPU 2

L1

Bus & Snoop Control

CPU N

L1

Bus & Snoop Control

L1

Changes for TM

B U I L D I N G   A N   H T M
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LO HTM Specifics

B U I L D I N G   A N   H T M

d

Processor

TAG
Data 

Cache

Violation
Load/Store 

Address

Snoop 

Control

Commit Address

Commit

Control

Store

Address

FIFO

Register

Checkpoint

Request Bus

Refill Bus

Commit

Address In

Commit

Address Out

DATARMESI W

Read Bits:

ld 0xdeadbeef

Write Bits:

st 0xcafebabe

Conflict Detection:
Compare incoming address 
to R bits

Commit:
Acquire permission to 
commit

Upgrade lines listed in Store 
Address FIFO
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Performance Questions

1. Will transactions perform as well as locks?

2. What is the best HTM system and why?

B U I L D I N G   A N   H T M
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Methodology

• Execution-driven x86 simulator

– 1 IPC (except ld/st)

• SPLASH-2 Benchmarks

– Heavily optimized for MESI

• STAMP

– Representative applications for today’s workloads

– Wide range of transactional behaviors

– Difficult to parallelize, TM only apps
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1. TM vs Locks

B U I L D I N G   A N   H T M

• Performs similar to locks
– TM overhead is negligible *McDonald ’05+

• Similar performance at low contention for all TM schemes
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B U I L D I N G   A N   H T M

• Pessimistic conflict detection degrades performance 

• Rolling back undo log in eager versioning is expensive

2. Which TM System is Best?
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• Early conflict detection saves expensive memory accesses
– High contention, many accesses / Tx

2. Which TM System is Best?
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2. Which TM System is Best?

• Same for SPLASH applications

• Same: 2 of 8 STAMP

– genome, kmeans

• LO Better: 4 of 8 STAMP

– bayes, labyrinth, vacation, yada

• EP/LP Better: 2 of 8 STAMP

– intruder, ssca2

• How can I decide on one system?
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2. Which TM System is Best?

• Conflict Detection/Resolution principal offender
– Need intelligent decisions on conflict

• Simple for Optimistic Conflict Detection
– Priority/aging and random backoff all you need for 

progress and fairness *Scott ‘04+

• More complex for Pessimistic
– More potential performance problems

– Stall or Abort?
• Need deadlock/livelock detection

– Best solution requires hardware predictor
*Bobba ’08’+
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Summary of Results

• TM performs as well as locks

• Lazy-Optimistic is the best performing, 
simplest architecture for TM

• Resource overflow is not a problem

B U I L D I N G   A N   H T M



38

1. Motivation & Contributions

2. Building a TM system in hardware

3. An architecture with only transactions

4. What about the interface to software?

5. Conclusions

S I G N P O S T
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Only Transactions

Transactions manage communication

– Can we dispense with coherence/consistency 
protocols?

• Should be no sharing outside of transactions

• In transactions, only care about sharing at boundaries

– Easier to reason about parallel programs

TCC: Transactional Coherence and Consistency
*Hammond ’04, McDonald ’05]

A L L   T R A N S A C T I O N S   A L L   T H E   T I M E
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TCC

• Everything is run inside of a transaction *Hammond ’04+

– Even when you don’t explicitly create one

• Still have explicit transactions
– To ensure atomicity

– Regions between explicit transactions can be split, by the system, into 
arbitrary transactions

• Simplified Reasoning
– One mechanism to communicate between threads

• Hardware is simpler

– Debugging becomes easier *Chafi ’05+

• All accesses are tracked  detect missing explicit transactions

– Deterministic replay *Wee ’08+

A L L   T R A N S A C T I O N S   A L L   T H E   T I M E
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TCC Modifies Lazy-Optimistic

• No need for MESI

• Commit

– Send data
• Only way to maintain 

coherence

A L L   T R A N S A C T I O N S   A L L   T H E   T I M E

d

Processor

TAG
Data 

Cache

Violation
Load/Store 

Address

Snoop 

Control

Commit Address

Commit

Control

Store

Address

FIFO

Register

Checkpoint

Request Bus

Refill Bus

Commit

Address In

Commit

Address Out

DATARMESI W

Data
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TCC Design Space

• Commit-through or Commit-back

– Commit-through

– Commit-back, snooping and M bit

• Line or word-level granularity

– Communicating less often so word-level is 
possible

• Avoids false sharing

• Need word-level R, W, and V bits
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TCC Performance

• Should be similar to LO

• More transactions means more transactional 
overhead

• Commits happen more often and contain 
data, not just addresses

– Will bandwidth become a bottleneck?
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TCC Performance



45

Summary of Results

• Neither overhead nor bandwidth are a 
problem
– TCC performs similarly to LO and therefore to 

locks

• Word-level granularity helps alleviate false 
sharing

• Update does not significantly improve 
performance
*McDonald ’05+

A L L   T R A N S A C T I O N S   A L L   T H E   T I M E
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1. Motivation & Contributions

2. Building a TM system in hardware

3. An architecture with only transactions

4. What about the interface to software?

5. Conclusions

S I G N P O S T
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Won’t Someone Think of the 
Software

• How does TM interact with library-based 
software containing transactions?

• How do we handle I/O and system calls within 
transactions?

• How do we handle exceptions and contention 
within transactions?

• How do we implement TM programming 
languages?

W H A T   A B O U T   S O F T W A R E
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Towards a TM ISA

• I defined a flexible, ISA-level semantics for TM

– Any TM system
*McDonald ’06+

• Four primitives:

– Two-phase Commit

– Transactional Handlers

– Nested Transactions

– Non-Transactional Loads and Stores

W H A T   A B O U T   S O F T W A R E
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Two-Phase Commit

• TM systems have monolithic commit

• Two-Phase Commit: validate and commit

– Validate ensures no conflicts

– Run code in between as part of the transaction

• Examples:

– Finalize I/O operations started in the transaction

W H A T   A B O U T   S O F T W A R E
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Transactional Handlers

• TM events processed by hardware
– Prevents “smart” decisions on commit and violate

• Handlers: fast code on commit, conflict, and abort
– Software can register multiple handlers per transaction

• Stack of handlers maintained in software

– Handlers have access to all transactional state 
• They decide what to commit or rollback, to re-execute or not, … 

• Example: 
– Contention managers 
– I/O operations within transactions and conditional 

synchronization

W H A T   A B O U T   S O F T W A R E
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Nested Transactions

• Early TM systems did not run transactions 
within transactions

– Subsumption creates long dependency chains

• Nested Transactions: closed and open

– Independent conflict tracking

– Some cases, independent isolation/atomicity 
behavior

W H A T   A B O U T   S O F T W A R E
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Closed Nesting

• Performance improvement (reduce conflict penalty)

• Examples:

– Composable libraries

W H A T   A B O U T   S O F T W A R E

atomic {

lots_of_work()

count++

}

atomic {

lots_of_work()

atomic {

count++

}

}
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Open Nesting

W H A T   A B O U T   S O F T W A R E

atomic {
lots_of_work()
malloc(…) {

[modify free list]
}
lots_of_work()

}

• Examples:
– System calls, communication between transactions/OS/etc.

• Open nesting provides atomicity & isolation for enclosed 
code

atomic {
lots_of_work()
malloc(…) {

openatomic {
[modify free list]

}
}
lots_of_work()

}
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Non-Transactional Loads and Stores

• Often, transactions contain dependencies that 
are irrelevant

• Non-Transactional Loads and Stores

– Avoid creating unneeded dependencies

– Prevent spurious conflicts

• Example:

– Object-based TM (only dependence on header)

W H A T   A B O U T   S O F T W A R E



55

TM ISA Implementation

• Combinations of hardware and software

– Nested Transactions like function calls

– Handlers stored on a stack

• Implemented like exceptions

• Need additional R/W bits or nesting level 
entry in cache lines

W H A T   A B O U T   S O F T W A R E
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TM ISA Evaluation

• Will the overhead be prohibitive?

– No, you’ve already seen it 

• Will the ISA be sufficient for all needs?

– No formal proof

– Examples *McDonald ’06, Carlstrom ’06, Carlstrom ‘07+

W H A T   A B O U T   S O F T W A R E
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Semantic Concurrency Control

• Is there a conflict?
– TM: yes, conflict on same memory location

– Logically: no, operation on different keys

• Common performance loss in TM programs
– Large, compound transactions

4

2 6

1 3 5 7

atomic {
lots_of_work();
insert(key=8, data1);

}

atomic {
lots_of_work();
insert(key=9, data2);

}

W H A T   A B O U T   S O F T W A R E
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Transactional Collection Classes

• Read operations track semantic dependencies
• Using open nested transactions

• Write operations deferred until commit
• Using open nested transactions

• Commit handler checks for semantic conflicts

• Commit handler performs write operations

• Commit/abort handlers clear dependencies
*Carlstrom ’07+

W H A T   A B O U T   S O F T W A R E
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Transactional Collection Classes

TestMap

– a long transaction containing a single map operation

W H A T   A B O U T   S O F T W A R E
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Summary of Results

• TM needs rich semantics
– Modern OS/PL

– Changing underlying architectures

• Four primitives provide needed functionality
– Two-Phase Commit

– Transactional Handlers

– Nested Transactions

– Non-Transactional Loads and Stores

• These primitives are low overhead and sufficiently 
flexible

W H A T   A B O U T   S O F T W A R E
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1. Motivation & Contributions

2. Building a TM system in hardware

3. An architecture with only transactions

4. What about the interface to software?

5. Conclusions

S I G N P O S T
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Contributions/Conclusions

• Evaluated hardware TM systems

– The best system from efficiency/complexity standpoint is 
Lazy-Optimistic

• Replaced coherence and consistency with only 
transactions

– Using only transactions for communication is 
advantageous and efficient

• Devised a hardware/software interface for TM

– Simple primitives provide TM with flexible and needed 
semantics

T H E S I S
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The Difficulties with Parallel 
Programming

1. Finding independent tasks in the algorithm

2. Mapping tasks to execution units (e.g. threads)

3. Defining & implementing synchronization
– Race conditions

– Deadlock avoidance

– Interactions with the memory model

4. Composing parallel tasks

5. Recovering from errors

6. Portable & predictable performance

7. Scalability

8. Locality management

And, of course, all the sequential issues…
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Simulation Parameters

• CPU 1–32 single-issue x86 cores

• L1 32-KB, 32-byte cache line, 4-way associative

• Private L2 512-KB, 32-byte cache line, 16-way associative, 3 
cycle latency

• L1/L2 Victim Cache 16 entries fully associative

• Bus Width 32 bytes

• Bus Arbitration 3 pipelined cycles

• Bus Transfer Latency 3 pipelined cycles

• Shared Cache 8MB, 16-way, 20 cycles hit time

• Main Memory 100 cycles latency, up to 8 outstanding 
transfers
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Hardware or Software TM?

• Software is slower: 2x to 8x overhead due to barriers
– Short term: discourages parallel programming

– Long term: wastes energy

• Software is harder: have to avoid programming pitfalls
– Not the same semantics as locks

– Strong vs Weak Isolation

M O T I V A T I O N
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Is STM Correct?

atomic{

if (list != NULL) {

e = list;

list = e.next;

}}  

r1 = e.x;

r2 = e.x;

assert(r1 == r2);

atomic{

if (list != NULL) {

p = list;

p.x = 9;

}

Thread 2Thread 1

list 0 1

• The privatization example

– T1 removes a head; T2 increments head

– Correctly synchronized code with locks

• Inconsistent results with all STMs

– T1 assertion may fail from time to time
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3. Resource Overflow

B U I L D I N G   A N   H T M

• Overflow mitigated by simple L2 and victim cache

• Virtualization *Chung ’06+
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B U I L D I N G   A N   H T M

Versioning
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Not logical in HW

Store new values in place
Fast commits

Undo log to store old values
Slow aborts

Conflicts at ld/st granularity
*Moore ’06+

Store new values on side
Slow commits
Fast aborts

Conflicts at TX boundaries
*Hammond ’04, McDonald ‘05]

Store new values on side
Slow commits
Fast aborts

Conflicts at ld/st granularity
*Ananian ’05+

Implementing HTM
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Pessimistic Detection Illustration
Case 1 Case 2 Case 3 Case 4
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Optimistic Detection Illustration
Case 1 Case 2 Case 3 Case 4
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