The Software Stack for
Transactional Memory

Challenges and Opportunities

Brian D. Carlstrom

JaeWoong Chung,

Christos Kozyrakis, Kunle Olukotun

Computer Systems Lab
Stanford University
http://tcc.stanford.edu

Parallel Programming
on Shared Memory

m [raditionally done using locks

m But locks are hard to use

= Semantic problems
m Deadlock
= Priority inversion
= Performance problems
m Simplicity at the expense of concurrency

m High concurrency at the expense of simplicity
m Pessimistic concurrency

Software Stack for Transactional Memory

Transactional Memory

m Allows for lock-free parallel programming
m [ransactions mark critical sections

m Same properties as database transactions
= Atomicity : all or nothing
= |solation : no partial updates

m [ransactions are easier to use than locks
= Coarse-grained non-blocking synchronization
= Optimistic concurrency

Software Stack for Transactional Memory

Opportunities and Challenges

m [M Is a promising solution for easy and
efficient parallel programming on multi-
core systems

m M brings up both opportunities and
challenges to software stack

m [oday’s talk focuses on, but not limited to,
the software stack on top of hardware TM

Software Stack for Transactional Memory

Ccontents

= Transactional Memory Overview
m What is TM?
= Why Is It interesting to Multi-core systems?
m [M example and primitives

m Software Stack
m Data Structure
Programming Composition
Operating System
Language Implementation
Programming Models
= Distributed Transactions

m Conclusion

Software Stack for Transactional Memory

TM execution model example

(Transactional Coherence and Consistency)

Id Oxdddd
ld Oxeeee Execute 7

Code Id Oxaaaa

st Oxbeef Id Oxbbbb Id Oxbeef
Execute e

I_ _I [

L
r

Code

Oxbeef

Execute
Code

Software Stack for Transactional Memory

Advanced TM primitives

m Nesting [iscaoe]

Core O Core 1 Core O

Il A'is initially O; /I A'is initially O;
Atomic { Atomic {

Atomic { Open_Atomic {
A++; /N1 A=" A++; /1 A="

} . } 8
At+; 1] 2 Sa5diL At+: 1] 2 =A L

) =A; /2 } =A; /2
< Closed Nesting > < Open Nesting >

m Callback
= Violation Handler and Commit Handler

Software Stack for Transactional Memory

Data Structure
(Opportunity)

m Coarse-grain non-blocking synchronization
= Both ease-to-use and performance

m Nesting — reduces violation overhead

= Open nesting reduces the freqguency of conflicts
= Closed nesting reduces the penalty of violation

m Callback — provides more programmability

= Violation Handler
= Automatic clean-up at conflicts
m Application specific conflict handler

Software Stack for Transactional Memory

Data Structure
(Challenge)

m How to hide the advanced techniques for
novice programmers?

= TM-based library

= like GNU classpath Java library

Software Stack for Transactional Memory

Programming Composition
(Opportunity)

m [ransaction nesting
= Flexibility in composing transactions

m Speculative parallel loops

= To avoid the hassle of setting and wrapping
up multiple threads

T _FOR(..) lterl lter2 IterN

{ 7] 7] 7]
// loop iteration :> °o o
}
tx1 tx2 tXN

Software Stack for Transactional Memory

Programming Composition
(Challenge)

m [ransactional I/O

= |/O buffering

m Defer I/O operations by the commit
m Execute the deferred operations at commit

m Conditional Waits

= Wait() Is related to lock objects

= Composible conditions for atomic regions
m Overflows

= Deep call stacks make transactions long
= Buffer overflow mechanism

Software Stack for Transactional Memory

Operating System
(Opportunity)

m Non-blocking synchronization
= Easier kernel construction
= Potential for speedup

m Atomicity for fault-tolerance
= TM undoes instructions at rollback
m Easy check-pointing

m |Solation for security [sospos]
= TM Isolates instructions by commit

Software Stack for Transactional Memory

Operating System
(Challenge)

m Context-switch

» In hardware TMs, transactional states have
affinity to processors

m |Interrupt [hpcaoe]
= Swapping in/out transactions

m |/O

m Software TM runs on virtual address space

Software Stack for Transactional Memory 13

Programming Models
(Opportunity)

m [M-based models tuned for parallelism

= Atomos [pldios]
m Java — old synchronization APIs + new TM primitives

m support for nesting, callback, and high-level
language construct

m X10, Fortress, and Chapel also explore
transactions

Software Stack for Transactional Memory

Programming Models
(Challenge)

m Many different semantics for TM
= Different definitions for the same term
m Strong vs. weak consistency

m \WWe prefer strong consistency

= No need to worry about possible bugs due to interaction
between transaction code and non-transactional code

= APIs for application and system programming

Software Stack for Transactional Memory

Language Implementation
(Opportunity)

m Aggressive JIT compiler optimization

= Try unsafe optimization
m Constant Propagation

= Rollback the computation if there Is a problem
= Restart with safe code

m Speculative Parallelism
= Make a code segment run in parallel

Software Stack for Transactional Memory

Language Implementation
(Challenge)

m Memory allocation
= Private memory pool or Nesting

m Incremental/Concurrent garbage collection

= Use violation handlers to deal with conflicts
between collectors and mutators

Software Stack for Transactional Memory

Distributed Transactions
(Opportunity)

m Integration with distributed transaction
systems

m Transaction Service in .Net, J2EE, and
CORBA

m Extracting parallelism from distributed
objects with transactional properties

= Enterprise Java Beans
= TX_REQUIRED, TX_BEAN_MANAGED

Software Stack for Transactional Memory

Distributed Transactions
(Challenge)

m E-commerce transactions are long
= Longer than time quanta
= |/O operations

m M virtualization can be helpful

Software Stack for Transactional Memory

Conclusion

m [ransactional Memory Is a promising
solution for parallel programming

m [ransactional memory brings up both
opportunities and challenges to software
stack

m \We hope research forces from many areas
join the efforts for Transactional memory

Software Stack for Transactional Memory

