
The Software Stack for The Software Stack for
Transactional MemoryTransactional Memory

Challenges and OpportunitiesChallenges and Opportunities

Brian D. Brian D. CarlstromCarlstrom

JaeWoongJaeWoong Chung,Chung,
ChristosChristos Kozyrakis, Kunle OlukotunKozyrakis, Kunle Olukotun

Computer Systems LabComputer Systems Lab
Stanford UniversityStanford University

http://tcc.stanford.eduhttp://tcc.stanford.edu

(picture will come here)

2Software Stack for Transactional Memory

Parallel ProgrammingParallel Programming
on Shared Memoryon Shared Memory

Traditionally done using locksTraditionally done using locks
But locks are hard to useBut locks are hard to use

Semantic problemsSemantic problems
DeadlockDeadlock
Priority inversionPriority inversion

Performance problemsPerformance problems
Simplicity at the expense of concurrencySimplicity at the expense of concurrency
High concurrency at the expense of simplicityHigh concurrency at the expense of simplicity
Pessimistic concurrencyPessimistic concurrency

3Software Stack for Transactional Memory

Transactional MemoryTransactional Memory

Allows for lockAllows for lock--free parallel programmingfree parallel programming
Transactions mark critical sectionsTransactions mark critical sections
Same properties as database transactionsSame properties as database transactions

Atomicity : all or nothingAtomicity : all or nothing
Isolation : no partial updatesIsolation : no partial updates

Transactions are easier to use than locksTransactions are easier to use than locks
CoarseCoarse--grained nongrained non--blocking synchronizationblocking synchronization
Optimistic concurrencyOptimistic concurrency

4Software Stack for Transactional Memory

Opportunities and ChallengesOpportunities and Challenges
TM is a promising solution for easy and TM is a promising solution for easy and
efficient parallel programming on multiefficient parallel programming on multi--
core systemscore systems

TM brings up both opportunities and TM brings up both opportunities and
challenges to software stackchallenges to software stack

TodayToday’’s talk focuses on, but not limited to, s talk focuses on, but not limited to,
the software stack on top of hardware TMthe software stack on top of hardware TM

5Software Stack for Transactional Memory

ContentsContents
Transactional Memory OverviewTransactional Memory Overview

What is TM?What is TM?
Why is it interesting to MultiWhy is it interesting to Multi--core systems?core systems?
TM example and primitivesTM example and primitives

Software StackSoftware Stack
Data StructureData Structure
ProgrammingProgramming CompositionComposition
Operating SystemOperating System
Language ImplementationLanguage Implementation
Programming ModelsProgramming Models
Distributed TransactionsDistributed Transactions

ConclusionConclusion

6Software Stack for Transactional Memory

TM execution model exampleTM execution model example
(Transactional Coherence and Consistency)(Transactional Coherence and Consistency)

CPU 0 CPU 1 CPU 2

Commit

Validation

Execute

Code

Commit

Validation

Execute

Code

Violate

Execute

Code

Re-

Execute

Code

...

ld 0xaaaa

ld 0xbbbb

...
ld 0xbeef
...

...

0xbeef
0xbeef

st 0xbeef

...

ld 0xdddd

ld 0xeeee

...

7Software Stack for Transactional Memory

Advanced TM primitivesAdvanced TM primitives
Nesting Nesting [isca06][isca06]

CallbackCallback
Violation Handler and Commit HandlerViolation Handler and Commit Handler

< Closed Nesting > < Open Nesting >

// A is initially 0;
Atomic {

....

// A is initially 0;
Atomic {

....
Open_Atomic {

A++; // 1
….

}
A++; // 2

}

A = ;

Core 1Core 0 Core 1Core 0

= A; // 0

A = ;

= A; // 1

Atomic {
A++; // 1
….

A++; // 2
}

} = A; // 2 = A; // 2

8Software Stack for Transactional Memory

Data StructureData Structure
(Opportunity)(Opportunity)

CoarseCoarse--grain nongrain non--blocking synchronizationblocking synchronization
Both easeBoth ease--toto--use and performanceuse and performance

Nesting Nesting –– reduces violation overheadreduces violation overhead
Open nesting reduces the frequency of conflictsOpen nesting reduces the frequency of conflicts
Closed nesting reduces the penalty of violationClosed nesting reduces the penalty of violation

Callback Callback –– provides more programmabilityprovides more programmability
Violation HandlerViolation Handler

Automatic cleanAutomatic clean--up at conflictsup at conflicts
Application specific conflict handler Application specific conflict handler

9Software Stack for Transactional Memory

Data StructureData Structure
(Challenge)(Challenge)

How to hide the advanced techniques for How to hide the advanced techniques for
novice programmers?novice programmers?

TMTM--based librarybased library
like GNU like GNU classpathclasspath Java libraryJava library

10Software Stack for Transactional Memory

Programming CompositionProgramming Composition
(Opportunity)(Opportunity)

Transaction nestingTransaction nesting
Flexibility in composing transactionsFlexibility in composing transactions

Speculative parallel loopsSpeculative parallel loops
To avoid the hassle of setting and wrapping To avoid the hassle of setting and wrapping
up multiple threadsup multiple threads

T_FOR(..)
{

// loop iteration
}

Iter1

tx1

Iter2

tx2

IterN

txN

11Software Stack for Transactional Memory

Programming CompositionProgramming Composition
(Challenge)(Challenge)

Transactional I/OTransactional I/O
I/O bufferingI/O buffering

Defer I/O operations by the commitDefer I/O operations by the commit
Execute the deferred operations at commitExecute the deferred operations at commit

Conditional WaitsConditional Waits
Wait() is related to lock objectsWait() is related to lock objects
ComposibleComposible conditions for atomic regionsconditions for atomic regions

OverflowsOverflows
Deep call stacks make transactions longDeep call stacks make transactions long
Buffer overflow mechanismBuffer overflow mechanism

12Software Stack for Transactional Memory

Operating SystemOperating System
(Opportunity)(Opportunity)

NonNon--blocking synchronizationblocking synchronization
Easier kernel constructionEasier kernel construction
Potential for speedupPotential for speedup

Atomicity for faultAtomicity for fault--tolerancetolerance
TM undoesTM undoes instructions at rollbackinstructions at rollback
Easy checkEasy check--pointingpointing

Isolation for security Isolation for security [sosp03][sosp03]

TM isolates instructions by commitTM isolates instructions by commit

13Software Stack for Transactional Memory

Operating SystemOperating System
(Challenge)(Challenge)

ContextContext--switchswitch
In hardware TMs, transactional states have In hardware TMs, transactional states have
affinity to processors affinity to processors

Interrupt Interrupt [hpca06][hpca06]

Swapping in/out transactionsSwapping in/out transactions
I/OI/O

Software TM runs on virtual address spaceSoftware TM runs on virtual address space

14Software Stack for Transactional Memory

Programming ModelsProgramming Models
(Opportunity)(Opportunity)

TMTM--based models tuned for parallelismbased models tuned for parallelism
AtomosAtomos [pldi06][pldi06]

Java Java –– old synchronization APIs + new TM primitivesold synchronization APIs + new TM primitives
support for nesting, callback, and highsupport for nesting, callback, and high--level level
language constructlanguage construct

X10, Fortress, and Chapel also explore X10, Fortress, and Chapel also explore
transactions transactions

15Software Stack for Transactional Memory

Programming ModelsProgramming Models
(Challenge)(Challenge)

Many different semantics for TMMany different semantics for TM
Different definitions for the same termDifferent definitions for the same term
Strong vs. weak consistencyStrong vs. weak consistency

We prefer strong consistencyWe prefer strong consistency
No need to worry about possible bugs due to interaction No need to worry about possible bugs due to interaction
between transaction code and nonbetween transaction code and non--transactional code transactional code

APIs for application and system programmingAPIs for application and system programming

16Software Stack for Transactional Memory

Language ImplementationLanguage Implementation
(Opportunity)(Opportunity)

Aggressive JIT compiler optimizationAggressive JIT compiler optimization
Try unsafe optimizationTry unsafe optimization

Constant PropagationConstant Propagation

Rollback the computation if there is a problemRollback the computation if there is a problem
Restart with safe codeRestart with safe code

Speculative ParallelismSpeculative Parallelism
Make a code segment run in parallelMake a code segment run in parallel

17Software Stack for Transactional Memory

Language ImplementationLanguage Implementation
(Challenge)(Challenge)

Memory allocationMemory allocation
Private memory pool or NestingPrivate memory pool or Nesting

Incremental/Concurrent garbage collectionIncremental/Concurrent garbage collection
Use violation handlers to deal with conflicts Use violation handlers to deal with conflicts
between collectors and between collectors and mutatorsmutators

18Software Stack for Transactional Memory

Distributed TransactionsDistributed Transactions
(Opportunity)(Opportunity)

Integration with distributed transaction Integration with distributed transaction
systemssystems

Transaction Service in .Net, J2EE, and Transaction Service in .Net, J2EE, and
CORBACORBA

Extracting parallelism from distributed Extracting parallelism from distributed
objects with transactional propertiesobjects with transactional properties

Enterprise Java BeansEnterprise Java Beans
TX_REQUIRED, TX_BEAN_MANAGEDTX_REQUIRED, TX_BEAN_MANAGED

19Software Stack for Transactional Memory

Distributed TransactionsDistributed Transactions
(Challenge)(Challenge)

EE--commerce transactions are longcommerce transactions are long
Longer than time quantaLonger than time quanta
I/O operationsI/O operations

TM virtualization can be helpfulTM virtualization can be helpful

20Software Stack for Transactional Memory

ConclusionConclusion

Transactional Memory is a promising Transactional Memory is a promising
solution for parallel programmingsolution for parallel programming
Transactional memory brings up both Transactional memory brings up both
opportunities and challenges to software opportunities and challenges to software
stackstack

We hope research forces from many areas We hope research forces from many areas
join the efforts for Transactional memoryjoin the efforts for Transactional memory

