
Improving Software Concurrency with Hardware-assisted
Memory Snapshot

JaeWoong Chung, Jiwon Seo, Woongki Baek, Chi Cao Minh, Austen McDonald
Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University

{jwchung, jiwon, wkbaek, caominh, austenmc, kozyraki, kunle}@stanford.edu

ABSTRACT
We propose a hardware-assisted memory snapshot to improve soft-
ware concurrency. It is built on top of the hardware resources for
transactional memory and allows for easy development of system
software modules such as concurrent garbage collector and dy-
namic profiler.

Categories and Subject Descriptors: C.1.4 [Processor Architec-
ture]: Parallel Architecture

General Terms: Performance, Design

Keywords: Transactional Memory, Memory Snapshot

1. INTRODUCTION
Chip-multiprocessors (CMPs) bring abundant parallelism to com-

modity systems. However, the lack of concurrency in applications
prevents us from fully exploiting the additional hardware cores. To
alleviate this problem, it is important to develop architectural tools
that help programmers to exploit parallelism. In search of such
tools, we found that memory snapshot is particularly useful for im-
proving the concurrency of software systems [2]. The basic con-
cept of snapshots has been used widely in databases, file systems
and reliable storage. A snapshot is an image of a large dataset at
a particular moment in time and provides a consistent view of the
constantly mutating dataset for later use. While several algorithms
for memory snapshot have been proposed, their usefulness for per-
formance optimizations is limited because they rely on software
techniques.

2. MSHOT
This paper proposes MShot, a hardware-assisted memory snap-

shot system. MShot supports memory snapshots of arbitrary life-
time that consist of multiple disjoint memory regions. With a single
call to the MShot interface, the system takes an atomic snapshot of
all regions and isolates the snapshot from further memory updates.
The snapshot image can be shared by multiple threads that operate
on the snapshot data using normal load/store instructions.

The goal of MShot is to allow for algorithmic simplicity, easy
code management, and performance at the same time. It provides
programs with an automated way to manage semantically unneces-
sary contention for shared data in a concurrent system. It is often
the case that some threads need access to a recent and consistent
version of the data, while other threads try to update data with more
recent results. For example, a memory profiler needs a consistent

Copyright is held by the author/owner(s).
SPAA’08, June 14–16, 2008, Munich, Germany.
ACM 978-1-59593-973-9/08/06.

view on the object reference graph at recent time. Using MShot,
the memory profiler can save a recent image of the object reference
graph fast and atomically and safely analyze the graph in parallel
with the application threads working on the up-to-date image of the
graph. There is no additional coding and time wasted on synchro-
nization between the application and profiler threads. With MShot,
it is easy for unskilled programmers to understand the concept of
memory snapshot and use it to improve software concurrency eas-
ily. The potential applications include, but not limited to, fast con-
current backup, checkpointing, debugging parallel programs, con-
current garbage collection, dynamic profilers, fast copy-on-write,
and in-memory databases.

To support low-overhead snapshots, MShot uses hardware to
build the snapshot image gradually. Our key observation to reduce
the hardware cost is that the hardware components for MShot are
found in other architectural proposals such as transactional mem-
ory systems (TM) [1]. TM is a promising technology that uses
hardware to support atomic execution without the need for man-
ual synchronization in user code. The hardware cost of MShot is
dramatically reduced by sharing hardware resources for data ver-
sioning in TM.

We prototyped three interesting modules: garbage collection (GC),
dynamic profiling, and copy-on-write. Taking advantage of the fact
that “once garbage, always garbage,” the snapshot-based GC takes
a memory snapshot and performs collection without any interfer-
ence with the application (mutator) threads running in parallel. The
snapshot-based profiler takes a snapshot of the stack for call-path
profiling or of the whole memory for memory profiling, while the
application makes further calls or memory updates. Copy-on-write
is widely used for efficient data sharing but incurs significant over-
head when the shared data need to be copied. Snapshot-on-write
takes a snapshot of data to be copied and executes the copy oper-
ation as a background job on another core. The main benefit from
using MShot in these applications is that it allowed us to use ad-
ditional cores in the CMP to hide the overhead of these modules
without complex code that manages their interactions with the main
application.

3. REFERENCES
[1] L. Hammond, V. Wong, et al. Transactional Memory

Coherence and Consistency. In the Proc. of the 31st Intl.
Symp. on Computer Architecture (ISCA), Munich, Germany,
June 2004.

[2] P. Jayanti. An optimal multi-writer snapshot algorithm. In
STOC ’05: Proc. of the 37th ACM symp. on Theory of
computing, 2005.


