ASeD: Availability, Security, and Debugging Support using
Transactional Memory

JaeWoong Chung, Woongki Baek, Nathan Grasso Bronson, Jiwon Seo
Christos Kozyrakis, Kunle Olukotun
Computer Systems Laboratory
Stanford University
{iwchung, wkbaek, nbronson, jiwon, kozyraki, kunle}@stanford.edu

ABSTRACT

We propose ASeD that uses the hardware resources of transac-
tional memory systems for non transactional memory purpose. We
show that the hardware components for register checkpointing, data
versioning, and conflict detection can be reused as basic building
blocks for reliability, security, and debugging support.

Categories and Subject Descriptors: C.1.4 [Processor Architec-
ture]: Parallel Architecture

General Terms: Reliability, Security, Design

Keywords: Transactional Memory, Reliability, Security, Debug-
ging

1. INTRODUCTION

The turn toward chip-multiprocessors (CMPs) has motivated re-
search on architectural support for practical parallel programming.
Transactional Memory (TM) is emerging as a promising technology
in this area [1]. Hardware TM (HTM) systems provide mechanisms
to manage multiple versions of data and detect conflicts between
concurrent transactions. [1,2]. With the help of software, these
mechanisms can provide the three necessary features for transac-
tional execution: atomicity (the ability to roll back to a safe sys-
tem state), consistency (the ability to enforce system-level invari-
ants such as execution order), and isolation (the ability to limit the
propagation of side effects).

2. ASED

The main thesis of this work is that atomicity, consistency, and
isolation (ACI) can be used to address significant system challenges
beyond concurrency control. Specifically, we use them to improve
availability, security, and ease of debugging. For many applica-
tions, these three metrics are equally important as raw performance.
In the past few years, there have been several architectural efforts
to develop techniques that independently provide support for avail-
ability, security, or debugging. While they are elegant and effective
schemes, throwing them all into a system creates a hodge podge
that is difficult to use and expensive to support in terms of hard-
ware resource. In this paper, we provide an integrated hardware
design for parallel programming, availability, security, and debug-
ging, First, instead of providing an end-to-end hardware solution
for each issue, we provide a core set of hardware primitives that
system vendors can use flexibly and combine with complementary
software mechanisms. Second, to provide availability, security,

Copyright is held by the author/owner(s).
SPAA’08, June 14-16, 2008, Munich, Germany.
ACM 978-1-59593-973-9/08/06.

and debugging support in a cost-effective manner, we generalize
the proposed support for atomicity, consistency, isolation in HTM
systems and reuse them to also support availability, security, and
debugging features.

This paper presents ASeD, an integrated design that provides ar-
chitectural support for availability, security, and debugging within
HTM systems. For availability, ASeD supports local and global
recovery schemes that can deal with permanent loss of cores and
caches and transient faults in communication or computation. For
security, ASeD provides fine-grain canaries and read/write barri-
ers without significant performance overhead. It also supports iso-
lated execution that can limit the effects of suspicious code or data
until its safety is verified. For debugging, ASeD supports an ar-
bitrary number of hardware watchpoints, the ability to simultane-
ously bookmark all threads in a program, and the ability to step all
threads forward or backward in time. These features are available
to both existing programs (parallel or sequential) and new parallel
programs that take advantage of memory transactions.

The mapping between the ASeD features and the hardware re-
sources in transactional memory systems is done in two steps. First,
instead of trying to implement each feature as a piecemeal solution,
we reduce the features to four basic primitives : thread-wide iso-
lated execution, system-wide global checkpoint, fine-grain address
protection, and user-level software handler. This approach allows
us to lower the hardware requirement on underlying transactional
memory systems without losing much the potential performance
benefits from the hardware resources by accelerating the common
cases in supporting the features. Second, we implement the prim-
itives using the hardware primitives of transactional memory. Iso-
lated execution is supported by transaction. Global checkpoint re-
quires additional hardware to record the values that belong to the
last checkpoint. Fine-grain address protection uses the transaction
conflict detection mechanism. Software handler is based on the
event handlers such as commit handler and abort handler.

Our evaluation results show that ASeD successfully reuses the
hardware resources in transactional memory to provide reliability,
security, debugging support at a reasonable additional hardware
cost.

3. REFERENCES

[1] L. Hammond, V. Wong, et al. Transactional Memory
Coherence and Consistency. In the Proc. of the 31st Intl.
Symp. on Computer Architecture (ISCA), Munich, Germany,
June 2004.

[2] K. E. Moore, J. Bobba, et al. LogTM: Log-Based
Transactional Memory. In the Proc. of the 12th Intl. Conf. on
High-Performance Computer Architecture, Feb. 2006.



