Testing Implementations of
Transactional Memory

Chaiyasit Manovit (Sun Microsystems)
Sudheendra Hangal (Magic Lamp Software)
Hassan Chafi (Stanford University)
Austen McDonald

Christos Kozyrakis
Kunle Olukotun

PACT'06 - 9/19/2006 1

Overview

» Transactional Memory

 Formal Specification of a Generic TM
* QOur Testing Methodology

* Results

* Summary

PACT'06 - 9/19/2006 2

Transactional Memory

* Multiprocessors becoming norm
» Parallel programs difficult with locks

» Motivating Example = Hash table
- 1 lock = simple but no concurrency
- Many locks = space overhead

» TM system guarantees atomicity (+isolation)
- Simpler with same or better performance

PACT'06 - 9/19/2006 3

Flavors of TM

* Implementations
- Hardware/Software/Hybrid
- Conflict detection
- Version management
- Contention management

* Features
- Granularity, e.g., location-based vs. object-based
- Nested transactions
- Non-transactional mem ops

* efc.

PACT'06 - 9/19/2006 4

Formal Specification of a Generic TM

* A Generic TM

- Granularity = location-based

- Closed nesting transactions

- Permits non-transactional mem ops
- No reordering of transactions

- Aborted transactions are invisible

» Formal Specification

- Axioms describing perceived serialization order of committed
mem ops and load values — similar to Sindhu et al [SFC91]

- Axioms may appear restrictive (capture functionality, not
implementations/optimizations)

PACT'06 - 9/19/2006 5

Transaction Semantics

* Notation
- Op memory operation
- 1] transaction boundary
- program order (per thread/processor)
- < memory order (the perceived serialization order, global)
- Properties: Transitive: a<bAb<c=a<c
Anti-symmetric: a<b= - (b<a)
* Axioms

TransOpOp: [Op;;0p>5] = Op; < Op;
TransMembar: Opj ; [Op>] = Op; < Op>

|Op;1]; Op, = Op; <Op;
TransAtomicity: [Op;;0ps] A —[Op;;0p;0p>] = (Op< Op;) v (Op>< Op)

PACT'06 - 9/19/2006 6

Our Testing Methodology: TSOtool [HvMmo04]

* Three steps

- Generate pseudo-random test programs with data races

* Execution results depend on race resolutions

* More aggressive than test programs with predictable results
- Execute on system under test

* Only observe load values, no instrumentation to observe race resolutions
- Analyze results for memory consistency

- Determine if the observed results are allowed by the memory model

- Key step

* Aggressive test programs help expose corner cases

PACT'06 - 9/19/2006 7

Analysis

* Input: execution trace + load values
 Assumption: stores write distinct values
» Graph-based

- Node =0Op

- Edge =<

- Goal =find a valid serialization order = total order

Kk __n

- Cycle ="<" not anti-symmetric = mem model violation
* NP-complete problem [Pap79, GK94]

PACT'06 - 9/19/2006 8

Analysis: Baseline (P Algorithm)

» Goal = find as many order as we can = partial order
* Incomplete analysis

* Rules for adding edges
- Static : determined from program order
e.g. [Op;;0p2] = Op; < Op>
- Observed : determined from the load values
e.g. Val[S]=Val[L] = S<L (for SC & transactional)

- Inferred : inferred from known mem order & transitive closures
e.g. <8 = L<S§'" (for same location & Val[S]=Val[L])

- lterate until no more inferred edges
- Enforce TransAtomicity at all time

* Loose bound = O(n’)

PACT'06 - 9/19/2006 9

Analysis: Deriv+Back

* Goal = find a valid total order
» Complete analysis
- Baseline + Topological sort, with backtracking

PACT'06 - 9/19/2006 10

Results

» Stanford TCC [HWC04]

- Transactional only

- Flattening nested transactions
- Compiler + APIs for C/Java

- Two implementations

+ TCC-A = Small scale with bus-based protocol
 TCC-B = Large scale with directory-based protocol

* Found 1 bug in TCC-A, 2+ bugs in TCC-B

PACT'06 - 9/19/2006

11

TCC-A Bug

Pl P2

// X1 // X3

A=1; A= 2;
TCC_Commit(); TCC_Commit();
// X2

X = A;

y = A;

TCC_Commit();

Execution result: x=1, y=2

TransAtomicity violation: x and y should read same value!
TCC_Commit () needs to clobber memory.

PACT'06 - 9/19/2006

12

TCC-B Bug

Pl P2
// X1 // X3
A=1; E2 » X = A;
TCC_Commit(); y = B;
#Eﬂ //////Egi/////" TCC_Commit();
// X2
B = 12;
A=2; =
TCC Comm1t(), E4

Execution result: x=1, y=12

No cycles yet. OK if non-transactional.

PACT'06 - 9/19/2006

E1l: Program order
E2: Val[S]=Val[L] = S<L

E3: Val[S]=Val[L] = S<L
F4:S<S§ =L<S

13

TCC-B Bug

P1 P2

E1l: Program order
// X1 // X3 E2: Val[S]=Val[L] = S<L
rcc. B x - A E3: Val[S]=Val[L] = S< L
TCC_Commit(); y = B; s vallS|=Va =95
s ® 7 TCCCmit0; gy g g
B =12;
A=2; =
TCC_Commit(Q); E4

Execution result: x=1, y=12
No cycles yet. OK if non-transactional.
A cycle is formed with TransAtomicity.

PACT'06 - 9/19/2006 14

Sun

microsystems

Analysis Time

Effect of # nodes (n) Effect of # processors (p)

m m

(O] (6]

& 100 k)
[J)

2 E

[(=

0 , X

T 10 !

g * p=16 £ » a=16

= v p=32 = v a=64

A p=64 A a=256
1 I 1 1 I I 1
128K 256K 512K 8 16 32 64
nodes (n) # processors (p)
Effect of # locations (a) Effect of transaction size (s)

— — O p=8
(%]

g e o p16

n 100 n
()

2 £

i =

2)

2 B

= [g]

é 10 E

e o

e K

1 I I \

4 16 64 256) .
locations (a) transaction size (s)

PACT'06 - 9/19/2006 15

Summary

» Extended work for conventional to transactional
- Axiomatic framework
- Testing methodology
- Complete analysis in reasonable time

» Found bugs in a “real” design

PACT'06 - 9/19/2006 16

