
Characterization of TCC on
Chip-Multiprocessors

Austen McDonald, JaeWoong Chung, Hassan Chafi,

Chi Cao Minh, Brian D. Carlstrom, Lance Hammond,

Christos Kozyrakis, and Kunle Olukotun

Stanford University

http://tcc.stanford.edu/



September 19, 2005 2

Take Away Points

• Parallel programming is hard

• Transactions make parallel programming easier
– Knight ’86, Herlihy ’93…Ananian ’05, Moore ’05, Rajwar ’05

– Transactional Coherence and Consistency

Contributions:

1. Present a simple implementation of TCC for CMPs.

Address basic challenges and explore design options.

2. Performance is comparable with a MESI-based CMP.

Gain the ease of TCC without significant loss of performance.

…or, “Why are you sitting through this talk?”



September 19, 2005 3

The Problems of Parallel Programming

• Critical sections make programming hard
– Coarse-grained locks: serialization

– Fine-grained locks: deadlocks

– Poor composability, not fault tolerant

• Parallel programming environment complex
– Consistency models are complex

– Performance tuning requires detailed and difficult-
to-acquire data



September 19, 2005 4

Enter Transactions…

• Transactions provide non-blocking 
synchronization
Large, programmer-defined atomic regions.

• Transactions simplify programming 
environment
– Simplify reasoning about consistency

– Performance tuning is easier (Chafi ’05 at ICS)

• Transactions enable speculative parallelism
– Programmers identify suspected parallel regions

Have you heard the gospel?



September 19, 2005 5

TCC Execution Model
“All transactions, all the time.”

CPU 0 CPU 1 CPU 2

Commit

Arbitrate

Execute

Code

Commit

Arbitrate

Execute

Code

Violate

Execute

Code

ld 0xbeef
Re-

Execute

Code

...

ld 0xaaaa

ld 0xbbbb

...

ld 0xbeef

...

...

0xbeef

0xbeef

st 0xbeef

...

ld 0xdddd

ld 0xeeee

...



September 19, 2005 6

CMP Environment

• CMP with simple CPUs

– write-back L1

– shared L2

– two wide, pipelined 
logical buses
• 16B bus, 3 cyc
pipelined arbitration, 3 
cyc pipelined transfer

• Same CMP setup for TCC 
and MESI

Changes for TCC support



September 19, 2005 7

An Architecture for TCC

Speculative state stored in caches

Speculatively-Read Bits:

ld 0xdeadbeef

Speculatively-Modified Bits:

st 0xcafebabe

Violation Detection:

Compare incoming 
address to SR bits

Commit:

Read pointers from Store 
Address FIFO, flush data 
with SM bits set



September 19, 2005 8

Other Implementations

• Speculative state in lower-level caches

–L2 and main memory

• Parallel commit

–More than one transaction commits at once

• Commit in place

–Flush writes only when needed

Options may be useful for large-scale TCC.

Simple is good enough in CMPs.



September 19, 2005 9

Architectural Options

• We explored some architectural options

–Double buffering

Simple, single buffering is sufficient

– Invalidate vs. update

Doesn’t matter for our applications

–Word- vs. line-level granularity

Word-level is better due to false sharing

–Associative Overflows…



September 19, 2005 10

Associative Overflows

• Limited speculative 
state tracking

• Capacity overflows
rare (Rajwar ’05 
handles them)

• Associative 
overflows the 
common case
– Can’t afford an 
expensive 
mechanism

• Simple victim cache

N
o
rm
a
liz
e
d
 O
v
e
rf
lo
w
 P
e
rc
e
n
ta
g
e

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

A-8 VC-0 A-16 VC-0 A-4 VC-4 A-4 VC-8 A-4 VC-16

barnes equake tomcatv



September 19, 2005 11

The Rest of the Talk

• Differences between TCC and MESI

• Performance Comparison

–Bandwidth Usage

–Speedup Summary

– In depth: MP3D

• The advantages of TCC on a difficult-to-parallelize 
program

Staying awake?



September 19, 2005 12

Differences between TCC and MESI

Blocking, small 
regions

Non-blocking, 
large, multi-object 
regions

Synchronization

Word-level

Communicates 
often and more—
large chunks

Speculatively 
parallel

TCC

Line-level→false
sharing

Coherence 
Granularity

Communicates 
only when needed

Coherence 
Frequency

None in basic 
form

Speculation

MESI



September 19, 2005 13

Performance Comparison

Comparing TCC to MESI…

• Scalability on applications tuned for MESI
– Execution-driven simulation of SPECfp, SPLASH, 
SPLASH-2, SPECjbb

– Measures sustained performance vs. ease of 
parallelizing



September 19, 2005 14

Bandwidth Usage

• Broadcasting commits does not hinder 
performance in a CMP

–On-chip bandwidth sufficient

0%

10%

20%

30%

40%

50%

60%

T
C
C

S
C
C

T
C
C

S
C
C

T
C
C

S
C
C

T
C
C

S
C
C

T
C
C

S
C
C

T
C
C

S
C
C

T
C
C

S
C
C

T
C
C

S
C
C

Idle

Sending

Arbitrating

barnes equake mp3d ocean radix swim tomcatv water

B
u
s
 U
ti
li
z
a
ti
o
n

M
E
S
I

M
E
S
I

M
E
S
I

M
E
S
I

M
E
S
I

M
E
S
I

M
E
S
I

M
E
S
I



S
e
p
te
m
b
e
r 19
, 2
0
0
5

15

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

TCC-2
MESI-2

TCC-4
MESI-4

TCC-8
MESI-8

TCC-16
MESI-16

TCC-2
MESI-2

TCC-4
MESI-4

TCC-8
MESI-8

TCC-16
MESI-16

TCC-2
MESI-2

TCC-4
MESI-4

TCC-8
MESI-8

TCC-16
MESI-16

b
a
rn
e
s

m
p
3
d

S
P
E
C
jb
b

P
erfo
rm
a
n
ce C

o
m
p
a
riso
n

C
o
m
p
a
rin
g
 T
C
C
 to
 M
E
S
I…

A
p
p
lic
a
tio
n
 a
n
d
 P
ro
c
e
s
s
o
r C
o
u
n
t

Speedup

T
C
C

M
E
S
I



September 19, 2005 16

In Depth: MP3D

• Rarefied hypersonic flow simulator

– Monte Carlo

• Molecules statically allocated to processors

– Causes false sharing

• Barrier-based synchronization (not many locks)

N
o
t 
a
c
tu
a
l 
m
p
3
d
 o
u
tp
u
t.



September 19, 2005 17

0

10

20

30

40

50

60

T
C
C
-2

M
E
S
I-
2

T
C
C
-4

M
E
S
I-
4

T
C
C
-8

M
E
S
I-
8

T
C
C
-1
6

M
E
S
I-
1
6

Useful L1Miss Idle/Sync Commit/Communication Violation

MP3D Results

• Execution time in MP3D.

P
e
rc
e
n
ta
g
e
 o
f 
N
o
rm
a
li
z
e
d
 

E
x
e
c
u
ti
o
n
 T
im
e



September 19, 2005 18

Conclusions

• Transactions simplify parallel programming

Contributions:

• We evaluated TCC for CMP systems

– TCC can be efficiently implemented in a simple manner

– Associative overflows handled with a simple victim cache

• Compared performance against a MESI-based CMP

– TCC performs similarly

– Bandwidth requirements are not excessive

• TCC enables the ease of transactions without hindering 
performance



Questions?

(whew!)


