
TCC Overview - January 2007

Transactional Memory

Architectural Support for Practical
Parallel Programming

The TCC Research Group

Computer Systems Lab
Stanford University

http://tcc.stanford.edu

The Era of Multi-core Chips

� Diminishing returns from single-core chips

� Wire delays, memory latency, power consumption,
complexity, …

� Multi-core chips are the scalable alternative
� Modular, fault-tolerant, memory-level parallelism …

� All processor vendors are building CMPs

� But, we how do we program them?
� Correct & fast parallel programming is a black art

Urgent: make parallel programming the common case

What Makes Parallel
Programming Hard?

1. Finding independent tasks

2. Mapping tasks to threads

3. Defining & implementing synchronization protocol

4. Race conditions & deadlock avoidance

5. Memory model

6. Portable & predictable performance

7. Scalability

8. Locality management

9. Composing parallel tasks

10. Recovering from errors

11. And, of course, all the single thread issues…

Example: Java 1.4 HashMap

� Fundamental data structure

� Map: Key → Value

public Object get(Object key) {

int idx = hash(key); // Compute hash

HashEntry e = buckets[idx]; // to find bucket

while (e != null) { // Find element in
bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}

� Not thread safe (no lock overhead when not needed)

Synchronized HashMap

� Java 1.4 solution: synchronized layer

� Convert any map to thread-safe variant

� Explicit locking – user specifies blocking

public Object get(Object key)

{

synchronized (mutex) // mutex guards all accesses to map m

{

return m.get(key);

}

}

� Coarse-grain synchronized HashMap:

� Thread-safe, easy to program

� Limits concurrency � poor scalability

� E.g., 2 threads can’t access disjoint hashtable elements

ConcurrentHashMap

public Object get(Object key) {
int hash = hash(key);
// Try first without locking...
Entry[] tab = table;
int index = hash & (tab.length - 1);
Entry first = tab[index];
Entry e;

for (e = first; e != null; e = e.next) {
if (e.hash == hash && eq(key, e.key)) {

Object value = e.value;
if (value != null)

return value;
else

break;
}

}
…

…
// Recheck under synch if key not there or
interference

Segment seg = segments[hash &
SEGMENT_MASK];

synchronized(seg) {
tab = table;
index = hash & (tab.length - 1);
Entry newFirst = tab[index];
if (e != null || first != newFirst) {

for (e = newFirst; e != null; e = e.next) {
if (e.hash == hash && eq(key, e.key))

return e.value;
}

}
return null;

}
}

� Java 5 solution: Complete redesign

Fine-grain locking & concurrent reads: complicated & error prone

Quantitative Example

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

Processors

E
x
e
c
u
ti
o
n
 T
im

e

coarse locks fine locks

0

1

2

3

4

5

1 2 4 8 16

Processors

E
x
e
c
u
ti
o
n
 T
im

e

coarse locks fine locks

B
a
la
n
c
e
d
 T
re
e

H
a
s
h
-T
a
b
le

Locks are Simply Broken

� Performance – correctness tradeoff
� Coarse-grain locks: serialization

� Fine-grain locks: deadlocks, livelocks, races, …

� Cannot easily compose lock-based code

� No failure atomicity

� User’s specification ≠ implementation
� Makes programming & tuning difficult

Outline

� Motivation

� Transactional Memory

� Motivation, use & performance example

� Transactional Coherence & Consistency (TCC)

� Architecture model, implementation, advanced features

� Performance evaluation

� SpecJBB2000

� Conclusions & current work

Transactional Memory (TM)

� Programmer specifies large, atomic tasks [Herlihy’93]
� atomic { some_work; }
� Multiple objects, unstructured control-flow, …
� Declarative approach; system implements details

� Transactional memory provides
� Atomicity: all or nothing
� Isolation: writes not visible until transaction commits
� Consistency: serializable commit order

� Performance through optimistic concurrency [Kung’81]
� Execute in parallel assuming independent transactions
� If conflicts detected, abort & re-execute one transaction

� Conflict = two transactions read-write same data

Transactional HashMap

� Transactional layer via an ‘atomic’ construct

� Ensure all operations are atomic

� Implicit atomic directive – system finds concurrency

public Object get(Object key)

{

atomic // System guarantees atomicity

{

return m.get(key);

}

}

� Transactional HashMap

� Thread-safe, easy to program, good performance

Transactional Memory:
Performance

� Concurrent read operations
� Basic locks do not permit multiple readers

� Need reader-writer locks ⇒ more complex

� Automatically allows multiple concurrent readers

� Concurrent access to disjoint data
� Users have to manually perform fine-grain locking

� Difficult and error prone

� Not modular

� Automatically provides fine-grain locking

Performance Revisited

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

Processors

E
x
e
c
u
ti
o
n
 T
im

e

coarse locks fine locks TCC

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 4 8 16

Processors

E
x
e
c
u
ti
o
n
 T
im

e

coarse locks fine locks TCC

B
a
la
n
c
e
d
 T
re
e

H
a
s
h
M
a
p

Transactional Memory
Benefits

� As easy to use as coarse-grain locks

� Scale as well as fine-grain locks
� No performance correctness tradeoff

� Automatic read-read & fine-grain concurrency

� Composition:
� Safe & scalable composition of software modules

� Failure atomicity & recovery

Does TM help with all the
Parallel Programming Issues?

� Finding independent tasks

� Mapping tasks to threads

� Defining & implementing synchronization protocol

� Race conditions & deadlock avoidance

� Memory model

� Composing parallel tasks

� Portable & predictable performance

� Scalability

� Locality management

� Recovering from errors

Outline

� Motivation

� Transactional Memory

� Motivation, use & performance example

� Transactional Coherence & Consistency (TCC)

� Architecture model, implementation, advanced features

� Performance evaluation

� SpecJBB2000

� Conclusions & current work

The Stanford Transactional
Coherence/Consistency Project

� A hardware-assisted TM implementation

� Avoids ≥2x overhead of software-only implementation

� Semantically correct TM implementation

� Does not require recompilation of base libraries

� A system that uses TM for coherence & consistency

� All transactions, all the time

� Use TM to replace MESI coherence
� Other proposals build TM on top of MESI

� Sequential consistency at the transaction level
� Address the memory model challenge as well

� Research on applications, TM languages,TM system
issues, TM architectures, TM prototypes,…

TCC Execution Model

CPU 0 CPU 1 CPU 2

Commit

Arbitrate

Execute

Code

Commit

Arbitrate

Execute

Code

Undo

Execute

Code

ld 0xbeefRe-

Execute

Code

...

ld 0xaaaa

ld 0xbbbb

...

ld 0xbeef

...

...

0xbeef
0xbeef

st 0xbeef

...

ld 0xdddd

ld 0xeeee

...

Transactional coherence/consistency with non-blocking guarantees

See [ISCA’04] for details

TCC Implementation

� TM implementation requirements

� Manage multiple data versions atomic commit or abort

� Track read-set and write-set for conflict detection

� TCC implementation approach

� Lazy version management using cache as write buffer

� Transaction updates merge with memory at commit

� Good fault tolerance & faster aborts compared to eager

� Optimistic conflict detection

� Detect conflicts when one transaction commits

� Built-in forward progress guarantees

� Commit also implements coherence/consistency

See [PACT’06] tutorial for alternatives

Example CMP Environment

Similar implementations for other CMP, SMP, cc-NUMA systems

TCC support

CMP Architecture for TCC

Other implementations

� Write-back, multi-level caches, directory-based with 2-phase commit

� Hybrid HW/SW approach

Transactionally Read Bits:

ld 0xdeadbeef

Transactionally Written Bits:

st 0xcafebabe

Violation Detection:

Compare incoming
address to R bits

Commit:

Read pointers from Store
Address FIFO, flush
addresses with W bits set

See [PACT’05] for details

Virtualization of TCC Hardware
[ASPLOS’06]

� Key observation: most transactions are small

� They fit easily in L1 and L2 caches (see [HPCA’06])

� Space virtualization (cache overflow)

� Switch to OS-based TM using virtual memory
� Page-granularity, copies/diffs for versioning and conflicts

� Transactions can use HW, OS, or both

� Can handle overflows and paging

� Time virtualization (interrupts, quanta expiration)

� Short transactions are aborted (faster than virtualization)

� Interrupts deferred till next transaction commits
� Otherwise, abort an transaction & reuse

Support for PL & OS
Functionality [ISCA’06]

� Challenging issues
� Interaction with library-based software, I/O, exceptions, &

system calls within transactions, error handling, schedulers,
conditional synchronization, memory allocators, …

� Defined complete TM semantics at the ISA level
� Two-phase commit
� Transactional handlers for commit/abort/violations

� All interesting events switch to software handlers

� Nested transactions (closed and open)
� Closed: independent rollback & restart for nested transactions
� Open: independent atomicity and isolation for nested transactions

� Demonstrate TM interaction with rich PL & OS functionality
� See [ISCA’06] and [PLDI’06] for details

TM Programming with TCC

� Basic approaches
� Sequential algorithms: use TM for thread-level speculation
� Parallel algorithm: use TM for non-blocking synchronization

� C-based programming
� OpenMP extensions for transactional programming
� Familiar, high-level model for C programmers

� Java-based programming with Atomos [PLDI’06]
� Replaces synchronized and volatile with atomic
� Transaction-based conditional waiting

� Removed wait, notify, and notifyAll
� Watch sets for efficient implementation

� Nested transactions, violation handlers, …

� Other work
� Performance feedback & tuning environment [ICS’05]
� TM programming with Python

ATLAS: the 1st TM Hardware
Prototype

� 8-core TCC system on BEE2 board (aka RAMP-Red)
� 100MHz; runs Linux OS
� 100x faster than a simulator

Outline

� Motivation

� Transactional Memory

� Motivation, use & performance example

� Transactional Coherence & Consistency (TCC)

� Architecture model, implementation, advanced features

� Performance evaluation

� SpecJBB2000

� Conclusions & current work

Warehouse

stockTable

(B-Tree)

itemTable

(B-Tree)

TM Example: SPECjbb2000

� 3-tier Java benchmark

� Shared data within and across warehouses

� Parallelized actions within one warehouse

� Orders, payments, delivery updates, etc on shared data

orderTable

(B-Tree)
District

Warehouse

newIDTransaction

Manager

Driver Threads

Driver Threads

Client Tier Transaction Server Tier Database Tier

stockTable

(B-Tree)

itemTable

(B-Tree)

Sequential Code for NewOrder
TransactionManager::go() {

// 1. initialize a new order transaction

newOrderTx.init();

// 2. create unique order ID

orderId = district.nextOrderId(); // newID++

order = createOrder(orderId);

// 3. retrieve items and stocks from warehouse

warehouse = order.getSupplyWarehouse();

item = warehouse.retrieveItem(); // B-tree search

stock = warehouse.retrieveStock(); // B-tree search

// 4. calculate cost and update node in stockTable

process(item, stock);

// 5. record the order for delivery

district.addOrder(order); // B-tree update

// 6. print the result of the process

newOrderTx.display();

}

� Non-trivial code with complex data-structures

� Fine-grain locking � difficult to get right

� Coarse-grain locking � no concurrency

TM Code for NewOrder
TransactionManager::go() {

atomic { // begin transaction

// 1. initialize a new order transaction

// 2. create a new order with unique order ID

// 3. retrieve items and stocks from warehouse

// 4. calculate cost and update warehouse

// 5. record the order for delivery

// 6. print the result of the process

} // commit transaction

}

� Whole NewOrder as one atomic transaction

� 2 lines of code changed

� Also tried nested transactional versions

� To reduce frequency & cost of violations

� 2 to 4 additional lines of code

TM Performance for
SpecJBB2000

� Simulated TM CMP

� Stanford’s TCC architecture

� Speedup over sequential

� Flat transactions: 1.9x

� Code similar to coarse locks

� Frequent aborted transactions
due to dependencies

� Nested transactions: 3.9-4.2x

� Reduced abort cost OR

� Reduced abort frequency

� See [WTW’06] for details

0

10

20

30

40

50

60

flat

transactions

nested 1 nested 2

N
o
rm

a
li
z
e
d
 E
x
e
c
.
T
im

e
 (
%
)

Aborted

Successful

Conclusions

� Transactional Memory (TM)
� Simple code that scales well on parallel systems
� Easy to compose, fault recovery, …

� Transactional Coherence and Consistency
� An efficient hardware-based TM
� Uses TM to provide coherence & consistency model

� Current research focus
� Hybrid & scalable TM implementations
� Language and application development work
� Operating system and error recovery support
� System-level transactions

Questions?

� Further information and papers available at

http://tcc.stanford.edu

