
Chí Cao Minh, JaeWoong Chung,
Christos Kozyrakis, Kunle Olukotun

http://stamp.stanford.edu

15 September 2008

  Multi-core chips are here
  But writing parallel SW is hard

  Transactional Memory (TM) is a promising solution
  Large atomic blocks simplify synchronization
  Speed of fine-grain locks with simplicity of coarse-grain locks
  But where are the benchmarks?

  STAMP: A new benchmark suite for TM
  8 applications specifically for evaluating TM
  Comprehensive breadth and depth analysis
  Portable to many kinds of TMs (HW, SW, hybrid)
  Publicly available: http://stamp.stanford.edu 

1

  Introduction

  Transactional Memory Primer

  Design of STAMP

  Evaluation of STAMP

  Conclusions

2

  Commonly achieved via:
  Threads for parallelism
  Locks for synchronization

  Unfortunately, synchronization with locks is hard

  Option 1: Coarse-grain locks
▪  Simplicity

▪  Decreased concurrency

  Option 2: Fine-grain locks
▪  Better performance (maybe)
▪  Increased complexity (bugs)
▪  Deadlock, priority inversion, convoying, …

3

  What is a transaction?
  Group of instructions in computer program:
  atomic { 
    if (x != NULL) x.foo(); 
    y = true; 
  }

  Required properties: Atomicity, Isolation, Serializability

  Key idea: Use transactions to ease parallel programming
  Locks → programmers define & implement synchronization
  TM → programmers declares & system implements
▪  Simple like coarse-grain locks & fast like fine-grain locks

4

  Each core optimistically executes a transaction

  Life cycle of a transaction:

  Start

  Speculative execution (optimistic)

  Build read-set and write-set

  Commit
▪  Fine-grain R-W & W-W conflict detection

  Abort & rollback
5

Start

Commit
Failure

…
Read
…
Write
…

Success

Transaction

6

6

1 4

3

9

8

7

Thread 1: insert 2 Thread 2: insert 5
Read-set: Read-set:

Write-set: Write-set:1

6, 3, 1 6, 3, 4

4

7

6

1 4

3

9

8

7

Thread 1: insert 2 Thread 2: insert 0
Read-set: Read-set:

Write-set: Write-set:1

6, 3, 1 6, 3, 1

1

  Introduction

  Transactional Memory Primer

  Design of STAMP

  Evaluation of STAMP

  Conclusions

8

  Benchmarks for multiprocessors
  SPLASH-2 (1995), SPEComp (2001), PARSEC (2008)
  Not well-suited for evaluating TM
▪  Regular algorithms without synchronization problems
▪  No annotations for TM

  Benchmarks for TM systems
  Microbenchmarks from RSTMv3 (2006)

  STMBench7 (2007)
  Haskell applications by Perfumo et. al (2007)

9

  Breadth: variety of algorithms & app domains

  Depth: wide range of transactional behaviors

  Portability: runs on many classes of TM systems

10

RSTMv3 no yes yes Microbenchmarks

STMbench7 no yes yes Single program

Perfumo et al. no yes no Microbenchmarks;
Written in Haskell

  Breadth
  8 applications covering different domains & algorithms
  TM simplified development of each
▪  Most not trivially parallelizable
▪  Many benefit from optimistic concurrency

  Depth
  Wide range of important transactional behaviors
▪  Transaction length, read & write set size, contention amount
▪  Facilitated by multiple input data sets & configurations per app

  Most spend significant execution time in transactions

  Portability
  Written in C with macro-based transaction annotations
  Works with Hardware TM (HTM), Software TM (STM), and hybrid TM

11

12

bayes Machine learning Learns structure of a Bayesian
network

genome Bioinformatics Performs gene sequencing

intruder Security Detects network intrusions

kmeans Data mining Implements K-means clustering

labyrinth Engineering Routes paths in maze

ssca2 Scientific Creates efficient graph representation

vacation Online transaction
processing

Emulates travel reservation system

yada Scientific Refines a Delaunay mesh

  Learns relationships among variables from observed data

  Relationships are edges in directed acyclic graph:

13

Sprinkler
 On

Grass Wet

Rain

14

Analyze data

Pick best
potential edge

Will create
cycle?

yes

no

Transaction

Get variable?

Insert edge

yes

no
Done

  Emulates travel reservation system
  Similar to 3-tier design in SPECjbb2000

15

Chí

JaeWoong

Manager

Reserve
Cancel
Update

Customers

Hotels

Flights

Cars

Client Tier Manager Tier Database Tier

Christos

Kunle

16

Manager does
 cancelation

Get task?

reserve

Task kind?

Manager does
 reservation

Manager does
 update

cancel update

Done
no

yes

Transaction Transaction Transaction

  Introduction

  Transactional Memory Primer

  Design of STAMP

  Evaluation of STAMP

  Conclusions

17

  Execution-driven simulation
  1–16 core x86 chip-multiprocessor with MESI coherence
  Supports various TM implementations:
▪  Hardware TMs (HTMs)
▪  Software TMs (STMs)

▪  Hybrid TMs

  Ran STAMP on simulated TM systems

  Two experiments:
  What transactional characteristics are covered in STAMP?

  Can STAMP help us compare TM systems?

18

bayes 60584 24 9 0.59 83%

genome 1717 32 2 0.14 97%

intruder 330 71 16 3.54 33%

kmeans 153 25 25 0.81 3%

labyrinth 219571 35 36 0.94 100%

ssca2 50 1 2 0.00 17%

vacation 3161 401 8 0.02 92%

yada 9795 256 108 2.51 100%

19

  Measured speedup on 1–16 cores for various TMs

  In general, hybrid faster than STM but slower than HTM

20

0
2
4
6
8

10
12
14

0 5 10 15

Sp
ee

du
p

Processor Cores

vacation

HTM

Hybrid TM

STM

  Sometimes the behavior is different from anticipated

  Lesson: Importance of conflict detection granularity

21

0

1

2

3

4

5

0 5 10 15

Sp
ee

du
p

Processor Cores

bayes

HTM

Hybrid TM

STM

  Some other lessons we learned:
  Importance of handling very large read & write sets (labyrinth)
  Optimistic conflict detection helps forward progress (intruder)

  Diversity in STAMP allows thorough TM analysis
  Helps identify (sometimes unexpected) TM design shortcomings
  Motivates directions for further improvements

  STAMP can be a valuable tool for future TM research

22

  STAMP is a comprehensive benchmark suite for TM
  Meets breadth, depth, and portability requirements
  Useful tool for analyzing TM systems

  Public release: http://stamp.stanford.edu 
  Early adopters:
▪  Industry: Microsoft, Intel, Sun, & more

▪  Academia: U. Wisconsin, U. Illinois, & more

  TL2-x86 STM

23

http://stamp.stanford.edu 

24

