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Abstract—Transactional Memory (TM) is emerging as a promis-
ing technology to simplify parallel programming. While several
TM systems have been proposed in the research literature, we
are still missing the tools and workloads necessary to analyze and
compare the proposals. Most TM systems have been evaluated
using microbenchmarks, which may not be representative of any
real-world behavior, or individual applications, which do not stress
a wide range of execution scenarios.

We introduce the Stanford Transactional Applications for
Multi-Processing (STAMP), a comprehensive benchmark suite for
evaluating TM systems. STAMP includes eight applications and
thirty variants of input parameters and data sets in order to
represent several application domains and cover a wide range of
transactional execution cases (frequent or rare use of transactions,
large or small transactions, high or low contention, etc.). Moreover,
STAMP is portable across many types of TM systems, including
hardware, software, and hybrid systems. In this paper, we provide
descriptions and a detailed characterization of the applications in
STAMP. We also use the suite to evaluate six different TM systems,
identify their shortcomings, and motivate further research on their
performance characteristics.

I. INTRODUCTION

Multi-core chips are now commonplace in server, desktop,
and even embedded systems. However, multi-core chips create
an inflection point for mainstream software development. To
benefit from the increasing number of cores per chip, appli-
cation developers have to develop parallel programs and deal
with cumbersome issues such as synchronization tradeoffs,
deadlock avoidance, and races. In this setting, Transactional
Memory (TM) [20] has surfaced as a promising technique to
help with shared-memory parallel programs. With conventional
lock-based multithreaded programming, programmers need to
manually manage the concurrency among threads. With TM,
programmers simply mark code segments as transactions that
should execute atomically and in isolation with respect to other
code. The TM system automatically manages synchronization
issues without further burden on the application developer.

There have been many proposed designs for TM sys-
tems based on hardware (HTM) [6, 16, 29], software
(STM) [13, 17, 19, 27, 34], and hybrid hardware/software
techniques [8, 12, 25, 33, 36, 39]. Most evaluations of these sys-
tems have relied on microbenchmarks or parallel applications
from benchmark suites like SPEComp [38] or SPLASH-2 [41].
While microbenchmarks are useful in targeting specific system
features, they are not representative of how full applications will
behave on TM systems. On the other hand, the benchmarks

in SPEComp and SPLASH-2 are full applications, but they
have been heavily optimized by an expert (typically as part of
a computer science Ph.D. thesis) to minimize synchronization
and communication across threads. Thus, converting their fine-
grain lock-protected regions to transactions leads to programs
that rarely use transactions, making it hard to evaluate the dif-
ferences among TM systems. Furthermore, this behavior is not
necessarily representative of how mainstream programmers will
use transactions in their programs. The most appealing potential
of TM for many programmers is the ability to write simple
parallel code with frequent use of coarse-grain transactions that
perform as well as code that has been carefully optimized to
use fine-grain locks.

For a benchmark suite to enable a thorough analysis of a wide
range of TM systems, it must have three key features. First, it
must target a variety of algorithms and application domains
that can benefit from TM. Second, it must cover a wide range
of transactional characteristics such as transaction lengths and
sizes of read and write sets. Moreover, the amount of time
spent in transactions should be varied. Certain applications or
data sets in the suite should generate cases where a significant
portion of time is spent in transactions. This requirement allows
the performance of TM systems to be evaluated with frequently-
used, coarse-grain transactions. Finally, the benchmark suite
must be compatible with a large number of TM systems,
covering hardware, software, and hybrid designs.

To meet these three requirements, we have developed
the Stanford Transactional Applications for Multi-Processing
(STAMP), a new benchmark suite designed specifically for
evaluating TM systems. The STAMP suite consists of eight
applications with 30 different sets of configurations and input
data that exercise a wide range of transactional behaviors.
Moreover, the STAMP code can run on a variety of hardware,
software, and hybrid TM systems. The specific contributions of
this work are as follows:

• We introduce STAMP, a new benchmark suite for trans-
actional memory systems. We describe the algorithms and
data structures, the parallelization strategy, and the use of
transactions in each of the eight applications.

• We provide a transactional characterization of the STAMP
applications. In particular, we measure the transaction
length, the sizes of the read and write sets, the amount
of time spent in transactions, and the average number of
retries per transaction.



• To demonstrate the usefulness of STAMP for TM research,
we use it to analyze the performance of six different TM
systems: two variants each of hardware, software, and
hybrid TM designs. The conventional wisdom in the TM
community has been that eager versioning leads to better
performance than lazy versioning and increasing amounts
of hardware support for TM lead to significant perfor-
mance improvements. Using STAMP, we show that these
generalizations are invalid in certain cases and discuss the
technical issues behind them.

The rest of this paper is organized as follows. Section II
reviews related benchmark efforts, and Section III introduces
our new TM benchmark suite. Sections IV and V present
the experimental methodology and results, respectively. Finally,
Section VI concludes the paper and comments on future work.

II. RELATED WORK

Researchers and industry consortiums have created many
benchmarks for evaluating parallel systems. Recently, some
benchmarks for TM systems have emerged as well. This section
reviews the scope, strengths, and shortcomings of these efforts
with respect to evaluating TM systems.

A. Parallel Benchmarks

Three of the oldest and most widely used parallel
benchmarks are SPLASH-2 [41], NPB OpenMP [22], and
SPEComp [38]. More recently, domain-specific parallel bench-
marks have also been created, such as BioParallel [21] for
bioinformatics and MineBench [30] for data mining. These
benchmark suites consist of several applications that span a
variety of algorithms. Additionally, all of them utilize OpenMP
as their programming model, except for SPLASH-2, which uses
a Pthreads-like model via ANL macros.

PARSEC [4] is a very recent parallel benchmark that was
created to address some of the shortcomings in the above-
mentioned benchmarks. Through selection of the PARSEC
applications, care was taken to use state-of-art techniques
in a range of application domains not limited to just high-
performance computing. The applications are written in either
C or C++ and use either OpenMP or Pthreads to implement
the parallelization.

Even though these benchmarks are useful in analyzing par-
allel systems in general, their applicability to TM systems is
limited. For example, many of the applications in these bench-
marks consist of regular algorithms that can be parallelized
without stressing synchronization (i.e., just using barriers is
sufficient). Furthermore, in order to achieve the highest possible
performance, the irregular applications in these benchmarks
have been carefully optimized by expert programmers to min-
imize the time spent in critical regions. Converting the critical
regions in these applications to transactions, leads to programs
with small transactions that are rarely used. Consequently, these
benchmarks are unable to sufficiently stress the underlying TM
system and do not generate most of the interesting cases of
transactional behavior with respect to transaction length and
frequency or sizes of read and write sets. Since manual tuning

of the application code by an expert contradicts the primary
goal of transactions memory (practical parallel programming
for mainstream developers), usage of these benchmarks alone
to evaluate TM systems may be misleading.

B. Transactional Memory Benchmarks
To better target TM systems, researchers have begun cre-

ating new workloads. Existing efforts can be grouped into
two general categories: microbenchmarks and individual ap-
plications. TM microbenchmarks are typically composed of
transactions that execute a few operations on a data structure
like a hash table or red-black tree [12, 13, 25, 27, 34]. These
microbenchmarks are easy to develop, parameterize, and port
across systems. Furthermore, they are very useful for isolating
particular cases of interest in the TM system. However, they
are not representative of full applications. Full applications
are likely to have transactions that consist of many operations
across several data structures and may also include significant
amounts of parallel or sequential work between transactions.
Thus, the transactional characteristics of microbenchmarks and
full applications may be significantly different.

A few larger workloads that target TM systems have been
designed to address the disparity between microbenchmarks
and full applications: Delaunay mesh generation [35], database
management [14], BerkeleyDB [12], maze routing [40], and
Delaunay mesh refinement and agglomerative clustering [24].
These applications represent realistic workloads and avoid
the pitfalls of microbenchmarks. However, as they are all
standalone and not part of a larger suite, their coverage of
algorithms and transactional behaviors is limited. Moreover,
only the first two of these applications are publicly available.

More recent work has focused on the creation of TM
benchmark suites. Perfumo et al. [31] have created a suite
of nine applications targeted at evaluating STMs. However,
the applications are implemented in Haskell and are thus not
directly compatible with the majority of STM implementations
or HTM and hybrid TM simulation environments. Almost all
of these applications are also microbenchmarks.

III. STANFORD TRANSACTIONAL APPLICATIONS
FOR MULTI-PROCESSING (STAMP)

At present, no benchmark suite for TM covers a wide
enough range of algorithms and application domains, stresses
most cases of transactional behavior, and runs easily on many
classes of TM systems. The Stanford Transactional Applica-
tions for Multi-Processing (STAMP) is the first benchmark
suite to satisfy all of these requirements. STAMP consists
of eight applications with 30 different sets of configurations
and input data that exercise a wide range of transactional
behaviors. Moreover, STAMP can run on a variety of hardware,
software, and hybrid TM systems. STAMP is publicly available
at http://stamp.stanford.edu.

A. Design Philosophy
The design of the STAMP benchmark suite follows three

guiding principles to make it an effective and comprehensive
tool for evaluating TM systems:



TABLE I: Summary of publicly available benchmark suites used to
evaluate TM systems. The bottom half of the table lists benchmarks
created specifically for analyzing TM systems. The Breadth column
also lists the number of applications or kernels included in each suite.

Benchmark Breadth Depth Portability

SPLASH-2 [41] yes (12) no partial

NPB OpenMP [22] yes (7) no partial

SPEComp [38] yes (11) no partial

BioParallel [21] partial (5) no partial

MineBench [30] partial (15) no partial

PARSEC [4] yes (12) no partial

RSTMv3 [27, 35] no (6) yes yes

STMbench7 [14] no (1) yes yes

Perfumo et al. [31] yes (9) yes no

STAMP yes (8) yes yes

1) Breadth: STAMP consists of a variety of algorithms and
application domains. In particular, we favor ones that
are not trivially parallelizable without synchronization,
as they can benefit significantly (in terms of ease of
programming) from TM’s optimistic concurrency.

2) Depth: STAMP covers a wide range of transactional be-
haviors such as varying degrees of contention, short and
long transactions, and different sizes of read and write
sets. We also include applications that make frequent
use of coarse-grain transactions and spend a significant
portion of their execution time within transactions. This
results in a balanced set of workloads that adequately
stress the underlying TM system.

3) Portability: STAMP can easily run on many classes of
TM systems, including hardware-based (HTM), software-
based (STM), and hybrid designs. The code for all
benchmarks is written in C with annotations to indicate
both transaction boundaries and memory accesses that
require instrumentation for software and hybrid systems.
We have successfully run the suite on six TM systems,
including hardware, software, and hybrid designs.

Table I summarizes how various parallel and TM benchmarks
meet the three requirements discussed above. To the best of
our knowledge, STAMP is the only one that satisfies all three
requirements at this point. All the parallel benchmarks (upper
half of Table I) are only partially portable with regard to TM
systems as they lack annotations for generating STM read and
write barriers. As for the TM benchmarks (lower half of table),
RSTMv3 [27, 35] consists of mostly microbenchmarks and thus
does not satisfy the breadth requirement.

B. Applications

STAMP currently consists of eight applications: bayes,
genome, intruder, kmeans, labyrinth, ssca2,
vacation, and yada. These applications span a variety of

TABLE II: The eight applications in the STAMP suite.

Application Domain Description

bayes machine learn-
ing

Learns structure of a Bayesian net-
work

genome bioinformatics Performs gene sequencing

intruder security Detects network intrusions

kmeans data mining Implements K-means clustering

labyrinth engineering Routes paths in maze

ssca2 scientific Creates efficient graph representa-
tion

vacation online transac-
tion processing

Emulates travel reservation system

yada scientific Refines a Delaunay mesh

computing domains as well as runtime transactional characteris-
tics such as varying transaction lengths, read and write set sizes,
and amounts of contention. Table II gives a brief description
of each benchmark.

1) bayes: This application implements an algorithm for
learning the structure of Bayesian networks from observed data.
The algorithm uses a hill-climbing strategy that combines local
and global search, similar to [11]. An adtree data structure [28]
is used to achieve efficient estimates of probability distributions.
The Bayesian network itself is represented as a directed acyclic
graph, with a node for each variable and an edge for each
conditional dependence between variables. Initially, the net-
work has no dependencies among variables, and the algorithm
incrementally learns dependencies by analyzing the observed
data. On each iteration, each thread is given a variable to
analyze, and as more dependencies are added to the network,
connected subgraphs of dependent variables are formed.

A transaction is used to protect the calculation and addition
of a new dependency, as the result depends on the extent
of the subgraph that contains the variable being analyzed.
Using transactions is much simpler than a lock-based approach
as using locks would require manually orchestrating a two-
phase locking scheme with deadlock detection and recovery
to allow concurrent modifications of the graph. Calculations
of new dependencies take up most of the execution time,
causing bayes to spend almost all its execution time in long
transactions that have large read and write sets. Overall, this
benchmark has a high amount of contention as the subgraphs
change frequently.

2) genome: Genome assembly is the process of taking
a large number of DNA segments and matching them to
reconstruct the original source genome. This program has two
phases to accomplish this task. Since there is a relatively large
number of DNA segments, there is often many duplicates.
The first phase of the algorithm utilizes a hash set to create
a set of unique segments. In the second phase of the algo-
rithm, each thread tries to remove a segment from a global
pool of unmatched segments and add it to its partition of



currently matched segments. When matching segments, Rabin-
Karp string matching [23] is used to speed up the comparison.

Transactions are used in each phase of the benchmark.
Additions to the set of unique segments are enclosed by
transactions to allow concurrent accesses, and accesses to
the global pool of unmatched segments are also enclosed
by transactions since threads may try to remove the same
segment. By using transactions for the reconstruction, we did
not have to implement a deadlock avoidance scheme. Overall,
the transactions in genome are of moderate length and have
moderate read and write set sizes. Additionally, almost all of
the execution time is transactional, and there is little contention.

3) intruder: Signature-based network intrusion detection
systems (NIDS) scan network packets for matches against a
known set of intrusion signatures. This benchmark emulates
Design 5 of the NIDS described by Haagdorens et al. in [15].
Network packets are processed in parallel and go through
three phases: capture, reassembly, and detection. The main
data structure in the capture phase is a simple FIFO queue,
and the reassembly phase uses a dictionary (implemented by a
self-balancing tree) that contains lists of packets that belong
to the same session. When evaluating their designs for a
multithreaded NIDS, Haagdorens et al. state that the complexity
of the reassembly phase caused them to use coarse-grain
synchronization. Thus, even though they attempted to exploit
higher levels of concurrency, their coarse-grain synchronization
resulted in worse performance.

In the TM version included in STAMP, the capture and
reassembly phases are each enclosed by transactions. Hence,
the code for each phase is as simple as that with coarse-grain
locks but hopefully achieves good performance through opti-
mistic concurrency. When operating on these data structures,
this benchmark has relatively short transactions. It also has
moderate to high levels of contention depending on how often
the reassembly phase rebalances its tree. Overall, since two of
the three phases are spent in transactions, this benchmark has
a moderate amount of total transactional execution time.

4) kmeans: The K-means algorithm groups objects in
an N -dimensional space into K clusters. This algorithm is
commonly used to partition data items into related subsets.
The implementation used is taken from MineBench [30] and
has each thread processing a partition of the objects iteratively.
The TM version add a transaction to protect the update of the
cluster center that occurs during each iteration. The amount
of contention among threads depends on the value of K,
with larger values resulting in less frequent conflicts as it is
less likely that two threads are concurrently operating on the
same cluster center. Since threads only occasionally update the
same center concurrently, this algorithm benefits from TM’s
optimistic concurrency

When updating the cluster centers, the size of the transaction
is proportional to D, the dimensionality of the space. Thus, the
sizes of the transactions in kmeans are relatively small and so
are its read and write sets. Overall, the majority of execution
time for kmeans is spent calculating the new cluster centers.

During this operation, each thread reads from its partition of
objects so no transaction is required. Thus, relatively little of
the total execution time is spent in transactions.

5) labyrinth: This benchmark implements a variant of
Lee’s algorithm [26] similar to the LEE-TM-p-ws program
from [40]. The main data structure is a three-dimensional
uniform grid that represents the maze. In the parallel version,
each thread grabs a start and end point that it must connect by
a path of adjacent maze grid points.

The calculation of the path and its addition to the global
maze grid are enclosed by a single transaction. A conflict
occurs when two threads pick paths that overlap. To reduce
the chance of conflicts, the privatization technique described
in [40] is used. Specifically, a per-thread copy of the grid is
created and used for the route calculation. Finally, when a
thread wants to add a path to the global grid, it revalidates by
re-reading all the grid points along the new path. If validation
fails, the transaction aborts and the process is repeated, starting
with a new, updated copy of the global grid. Transactions are
beneficial for implementing this program as deadlock avoidance
techniques would be required in a lock-based approach.

Additional performance can be achieved in the program by
using early-release [19], as described in [40]. Early-release
allows a transaction to remove a data address from its transac-
tional read set so that it does not generate conflicts. However,
the programmer or compiler must guarantee that removing the
address from the read set does not violate the atomicity of the
program. In labyrinth, early-release is used to remove all
transactional reads generated when copying the global grid to
the per-thread copy. As early-release operates with cache line
granularity, each maze grid point is padded to occupy an entire
cache line to ensure correctness. Finally, since early-release is
not available on all TM systems, its use can be disabled when
compiling this benchmark.

Overall, almost all of labyrinth’s execution time is taken
by the path calculation, and this operation also reads and writes
an amount of data proportional to the number of total maze grid
points. Consequently, labyrinth has very long transactions
with very large read and write sets. Virtually all of the code is
executed transactionally, and the amount of contention is very
high because of the large number of transactional accesses to
memory.

6) ssca2: Scalable Synthetic Compact Applications 2
(SSCA2) [2] is comprised of four kernels that operate on a
large, directed, weighted multi-graph. These four graph kernels
are commonly used in applications ranging from computational
biology to security. For STAMP, we focus on Kernel 1, which
constructs an efficient graph data structure using adjacency
arrays and auxiliary arrays. This part of the code is well suited
for TM as it benefits greatly from optimistic concurrency.

The transactional version of SSCA2 has threads adding nodes
to the graph in parallel and uses transactions to protect accesses
to the adjacency arrays. Since this operation is relatively small,
not much time is spent in transactions. Additionally, the length
of the transactions and the sizes of their read and write sets
is also small. The amount of contention is the application is



relatively low as the large number of graph nodes leads to
infrequent concurrent updates of the same adjacency list.

7) vacation: This application implements an on-
line transaction processing system similar in design to
SPECjbb2000 [37] but serving the task of emulating a travel
reservation system instead of a wholesale company. The system
is implemented as a set of trees that keep track of customers and
their reservations for various travel items. During the execution
of the workload, several client threads perform a number of
sessions that interact with the travel system’s database. In par-
ticular, there are three distinct types of sessions: reservations,
cancellations, and updates.

Each of these client sessions is enclosed in a coarse-grain
transaction to ensure validity of the database. Consequently,
vacation spends a lot of time in transactions and its trans-
actions are of medium length with moderate read and write set
sizes. Low to moderate levels of contention among threads can
be created by increasing the fraction of sessions that modify
large portions of the database. Finally, using transactions greatly
simplified the parallelization as designing an efficient locking
strategy for all the data structures in vacation is non-trivial.

8) yada: The yada (Yet Another Delaunay Application)
benchmark implements Ruppert’s algorithm for Delaunay mesh
refinement [32]. The basic data structures are a graph that stores
all the mesh triangles, a set that contains the mesh boundary
segments, and a task queue that holds the triangles that need to
be refined. In each iteration of the algorithm, a skinny triangle is
removed from the work queue, its retriangulation is performed
on the mesh, and any new skinny triangles that result from the
retriangulation are added to the work queue.

The usage of transactions in yada is similar to that in [24],
but it is applied to a different algorithm in this benchmark.
Accesses to the work queue are enclosed by a transaction as
is the entire refinement of a skinny triangle. As almost all
the execution time is spent calculating the retriangulation of a
skinny triangle, this benchmark has relatively long transactions
and spends almost all of its execution time in transactions.
While performing the retriangulation, several triangles in the
mesh are visited and later modified, leading to large read
and write sets and a moderate amount of contention. yada
continuously concurrently modifies a shared graph, which was
simpler for us to parallelize with TM than with locks.

C. Configurations and Data Sets

One goal for STAMP is to cover a wide range of transac-
tional execution behaviors in order to stress all aspects of the
evaluated TM systems. The differences across the applications
discussed above achieve this to some extent: the applications
exhibit different transaction lengths, read and write set sizes,
percentage of time spent in transactions, amount of contention,
and working set size. Transactional characteristics of each
STAMP application are summarized qualitatively in Table III.

To provide further coverage, we also exploit the fact that
several of the applications exhibit different behavior depending
on the size and type of the input data set. Table IV lists

TABLE III: Qualitative summary of each STAMP application’s run-
time transactional characteristics: length of transactions (number of
instructions), size of the read and write sets, time spent in transactions,
and amount of contention. The description of each characteristic is rel-
ative to the other STAMP applications. A quantitative characterization
appears later in Section V.

Application Tx Length R/W Set Tx Time Contention

bayes Long Large High High

genome Medium Medium High Low

intruder Short Medium Medium High

kmeans Short Small Low Low

labyrinth Long Large High High

ssca2 Short Small Low Low

vacation Medium Medium High Low/Medium

yada Long Large High Medium

each of the STAMP applications and their recommended con-
figurations and data sets. There are six variants of kmeans
and vacation to target different levels of contention and
working set sizes. These variants are denoted by append-
ing -low and -high to the application name to indicate the
relative amount of contention. Additionally, the usage of a
larger data set is indicated by adding a ‘+’ to the end of
the application name. Thus, the six variants of kmeans are
named kmeans-high, kmeans-high+, kmeans-high++
kmeans-low, kmeans-low+, and kmeans-low++. For
the remainder of the benchmarks, there are only three vari-
ants as increasing the data set size also affects the level of
contention. For example, bayes has the variants: bayes,
bayes+ and, bayes++. Finally, the variants without a ‘++’
suffix are intended for running in simulation environments.

D. Implementation

To ease portability of STAMP to several TM systems, we
chose to implement all the applications using the C program-
ming language. We also used a low-level API to manually
identify parallel threads and insert transaction markers and
barriers. The same annotations are used by all TM versions
of the code. Moreover, the only difference among the STM
and hybrid versions of the code is linkage against a different
TM barrier library. Manual optimizations of read and write
barriers for accesses to shared data were performed following
the guidelines in [1, 18]. Currently, the TM annotations are
implemented by C macros, which makes them easy to replace,
remove, or port to different systems. Currently, the STAMP
applications are also compatible with OpenTM [3], which
provides a higher-level representation of the transactions.

IV. METHODOLOGY

Two sets of experiments were used to evaluate STAMP. The
first set quantitatively verifies the coverage of transactional
behaviors by the benchmark suite. The second set demonstrates
the portability and practical usefulness of STAMP by running



TABLE IV: Recommended configurations and data sets for STAMP. Suffixes of -low and -high indicate the relative amount of contention, and
appended ‘+’ symbols indicate larger input sizes.

Application Arguments Description

bayes -v32 -r1024 -n2 -p20 -i2 -e2 Dependencies for v variables are learned from r records, which
have n× p parents per variable on average. Edge insertion has a
penalty of i, and up to e edges are learned per variable.

bayes+ -v32 -r4096 -n2 -p20 -i2 -e2
bayes++ -v32 -r4096 -n10 -p40 -i2 -e8 -s1

genome -g256 -s16 -n16384 Gene segments of s nucleotides are sampled from a gene with g
nucleotides. A total of n segments are analyzed to reconstruct the
original gene.

genome+ -g512 -s32 -n32768
genome++ -g16384 -s64 -n16777216

intruder -a10 -l4 -n2048 -s1
n traffic flows are analyzed, a of which have attacks injected.
Each flow has a max of l packets, and the random seed s is used.intruder+ -a10 -l16 -n4096 -s1

intruder++ -a10 -l128 -n262144 -s1

kmeans-high -m15 -n15 -t0.05 -i random-n2048-d16-c16
The number of cluster centers used is varied from m to n. A
convergence threshold of t is used, and analysis is performed on
input i. The input consists of n points of d dimensions generated
about c centers.

kmeans-high+ -m15 -n15 -t0.05 -i random-n16384-d24-c16
kmeans-high++ -m15 -n15 -t0.00001 -i random-n65536-d32-c16
kmeans-low -m40 -n40 -t0.05 -i random-n2048-d16-c16
kmeans-low+ -m40 -n40 -t0.05 -i random-n16384-d24-c16
kmeans-low++ -m40 -n40 -t0.00001 -i random-n65536-d32-c16

labyrinth -i random-x32-y32-z3-n96 The input i consists of a maze of dimensions x× y × z. n paths
are routed.labyrinth+ -i random-x48-y48-z3-n64

labyrinth++ -i random-x512-y512-z7-n512

ssca2 -s13 -i1.0 -u1.0 -l3 -p3 There are 2s nodes in the graph. The probability of inter-clique
edges and unidirectional edges are i and u, respectively. The max
path length is l, and the max number of parallel edges is p.

ssca2+ -s14 -i1.0 -u1.0 -l9 -p9
ssca2++ -s20 -i1.0 -u1.0 -l3 -p3

vacation-high -n4 -q60 -u90 -r16384 -t4096
The database has r records of each reservation item, and clients
perform t sessions. Of these sessions, u% reserve or cancel items
and the remainder create or destroy items. Sessions operate on up
to n items and are performed on q% of the total records.

vacation-high+ -n4 -q60 -u90 -r1048576 -t4096
vacation-high++ -n4 -q60 -u90 -r1048576 -t4194304
vacation-low -n2 -q90 -u98 -r16384 -t4096
vacation-low+ -n2 -q90 -u98 -r1048576 -t4096
vacation-low++ -n2 -q90 -u98 -r1048576 -t4194304

yada -a20 -i 633.2 The input mesh i is refined so that it has a minimum angle of a.
The input 633.2 consists of 1264 elements; ttimeu10000.2, 19998
elements; and ttimeu1000000.2, 1999998 elements.

yada+ -a10 -i ttimeu10000.2
yada++ -a15 -i ttimeu1000000.2

the suite on several different TM designs and comparing their
performance. To ensure a valid comparison between STM and
HTM systems, we used an execution-driven simulator for all
experiments. Table V presents the main parameters of the
simulated multi-core system we used. The processor model
assumes an IPC of 1 for all instructions that do not access
memory. However, the simulator captures all the memory
hierarchy timings including contention and queuing events.

Using the simulator, we ran STAMP on top of the following
TM systems:

• Lazy HTM: This is an HTM system that follows the TCC
architecture [16], except that transactions are only exe-
cuted for code sections demarcated by transaction bound-
ary markers instead of all code sections. It implements lazy
data versioning in caches and performs conflict detection
late (when a transaction is ready to commit) by using
the coherence protocol. Because the coherence protocol is
used for conflict detection, the lazy HTM detects conflicts
at cache line granularity. When the lazy HTM overflows
the caches’ capacity for buffering speculative data, it
temporarily serializes the execution of transactions. On

TABLE V: Configuration for the simulated multi-core system.

Feature Description

Processors 1 to 16 x86 cores, in-order, single-issue

L1 Cache 64KB, private, 4-way, 32B line, 1-cycle access
Provides TM bookkeeping for HTM systems

Network 32B bus, split transactions, pipelined, MESI

L2 cache 8MB, shared, 32-way, 32B line, 12-cycle access

Memory 100-cycle off-chip access

Signatures 2048 bits per signature register
Provides conflict detection for hybrid TM systems
Hash functions:

(1) Unpermuted cache line address
(2) Cache line address permuted as in [9]
(3) Address from (2) shifted right by 10 bits
(4) Permuted lower 16 bits of cache line address

conflicts, the lazy HTM restarts the aborted transaction im-
mediately, without any backoff schemes. Note that there is
no fundamental reason why HTM cannot implement more



sophisticated contention management; not using backoff
was just a simple HTM design point we used.

• Eager HTM: An HTM system similar to LogTM [29].
It uses the L1 caches and the coherence protocol to im-
plement eager data versioning and early conflict detection,
respectively. On conflicts, the requester loses, aborts, and
restarts immediately without any backoff. Conflicts are de-
tected at line granularity, and to prevent livelock, transac-
tions are given high priority after aborting 32 times. There
is no fundamental reason why eager HTM cannot use more
sophisticated contention management (e.g., temporarily
stalling transactions), and the previously described policy
is simply one we chose. Finally, overflowed addresses
are handled by inserting them into a Bloom filter [5].
The Bloom filter participates in the conflict detection
mechanism and because of its conservative nature (aliasing
of addresses), it may signal false conflicts.

• Lazy STM: An x86 port of the TL2 software TM sys-
tem [13]. It performs lazy versioning using a software
write buffer. To provide conflict detection, it uses locks
for data in the write set during commit. Conflicts for
data in the read set are detected by checking version
numbers periodically, and after a transaction aborts three
times, the lazy STM uses a randomized linear backoff
mechanism. Finally, it detects conflicts at word granularity
and provides weak isolation of transactions.

• Eager STM: An eager version of TL2. It uses an undo
log and holds locks on data in the write set throughout
the transaction to provide versioning. Conflict detection
is similar to the lazy STM system, and its conflict man-
agement, conflict detection granularity, and weak isolation
policies are the same.

• Lazy Hybrid: A hybrid of the lazy STM that follows the
SigTM system [8]. It uses hardware signatures to track the
read and write set and to implement fast conflict detection.
Data versioning is still in software, and randomized linear
backoff is used for contention management. Finally, con-
flict detection is performed at line granularity and strong
isolation of transactions is provided.

• Eager Hybrid: The eager equivalent of the lazy hybrid.
Conflict detection utilizes hardware signatures but data
versioning uses a software undo log. The eager hybrid
uses the same contention management policy as the lazy
hybrid (and the two STMs) and provides line granularity
conflict detection and strong isolation of transactions.

We selected these TM systems as representative points in
the TM design space. The conventional wisdom is that HTM
systems should perform the best as hardware transparently
performs all transactional bookkeeping. Previous studies have
shown that HTM systems are up to a factor of four times
faster than STM and up to a factor of two faster than hybrid
systems [8, 33]. Similarly, it is commonly thought that eager
systems should perform better than lazy systems as eager sys-
tems perform their memory updates throughout the transaction,
instead of waiting till the transaction commit point [29, 34].

STAMP was used to evaluate if the conventional wisdom
holds for these designs. A good benchmark suite that stresses
a wide range of potential behavior may be able to identify
unexpected cases in which the conventional wisdom is wrong.
We used the same code (same parallelization strategy and
same transaction boundaries) with all systems. The software
and hybrid TM systems use the optimized annotations for
read and write barriers, but each of them provides different
code for the actual barrier functionality. When compiling for
HTM systems, the annotations for read and write barriers were
ignored (implicit barriers). For the application configurations
and data sets, those without the ‘++’ suffix were used as those
are the ones designed for use with a simulation environment.

V. EVALUATION

In this section, we present a quantitative analysis of the
transactional characteristics of STAMP, and use STAMP to
compare the performance of six different TM systems.

A. STAMP Basic Characterization

Table VI presents the basic runtime statistics for the STAMP
applications and includes data such as the transaction length
in instructions, read and write set size in 32-byte cache lines,
percentage of execution time spent in transactions, and average
number of retries per transaction. All these were measured us-
ing the lazy HTM to shield from the implementation details of
the barriers necessary for memory accesses to shared variables
in STM systems. For the number of read and write barriers and
number of STM retries, however, the STMs were used.

All transactional characteristics in Table VI vary at least
two orders of magnitude, thus showing that STAMP covers
many different transactional execution scenarios. In most of
the applications, the transactional statistics follow a normal
distribution, but for genome and intruder they are bimodal
and for vacation they are trimodal. The modes in these
applications are caused by the phased nature of their execution.

The mean number of instructions per transaction ranges from
a low of 50 instructions in bayes to a high of 687,809 in
labyrinth+. In labyrinth, the large set of operations
necessary to find a routing path are packed in a single atomic
block. While this coarse-grain approach greatly simplifies code
management, it leads to large transactions. In addition to
labyrinth, bayes and yada also have long transactions.

The sizes of transactional read and write sets were found by
running STAMP on the lazy HTM. The 90th percentile is given
as a guide to TM system designers for sizing their hardware
transactional buffers to handle the common case. The largest
read and write set sizes are found in labyrinth+, with values
of 783 and 779 cache lines, respectively (24.5 KB and 24.3 KB,
respectively). This implies that for HTMs, transactional support
at the L2 cache may be needed to avoid the overhead of
virtualization mechanisms, especially because of associativity
misses. At the other extreme is ssca2 with a read set of 10
lines and a write set of 4 lines. Since most of the write sets are
small, not stalling conflicting transactions in our eager HTM is
acceptable since applying the undo log is not too expensive.



TABLE VI: The basic characterization of the STAMP applications. The number of instructions per transaction does not include instructions
that occur as part of TM barriers. The lazy HTM was used to measure the read and write sets and the amount of time spent in transactions.
The amounts of read and write barriers were collected using the lazy STM, and the lazy HTM was used to find the fraction of time spent in
transactions. For the number of retries, 16 threads were used on all systems. The transactional statistics for genome and intruder follow
bimodal distributions, and those for vacation are trimodal. The rest of the applications have normal distributions.

Application

Per Transaction Time in
Trans-
actions

Retries Per Transaction Working Set

Instruc-
tions
(mean)

Read Set
(90 pctile)

Write
Set
(90 pctile)

Read
Barrier
(90 pctile)

Write
Barrier
(90 pctile)

HTM STM Small
(KB)

Large
(MB)

Lazy Eager Lazy Eager
(mean) (mean) (mean) (mean)

bayes 60,584 452 304 24 9 83% 0.66 6.50 0.59 0.66 128 2
bayes+ 57,130 448 266 26 9 83% 0.69 5.78 0.61 0.69 128 2

genome 1,717 98 15 32 2 97% 0.10 0.47 0.14 2.20 128 1
genome+ 1,709 108 15 30 2 97% 0.02 0.26 0.06 1.14 128 4

intruder 330 51 20 71 16 33% 1.79 6.27 3.54 3.31 32 1
intruder+ 331 54 18 54 9 43% 0.67 2.05 1.95 2.96 128 2

kmeans-high 117 14 5 17 17 7% 0.07 0.13 2.73 3.10 16 1
kmeans-high+ 153 16 6 25 25 6% 0.05 0.11 3.49 3.68 16 2
kmeans-low 117 14 5 17 17 3% 0.02 0.05 0.89 0.80 16 1
kmeans-low+ 153 16 6 25 25 3% 0.01 0.02 0.81 0.70 16 2

labyrinth 219,571 433 458 35 36 100% 0.72 2.64 0.94 1.11 64 1
labyrinth+ 687,809 783 779 46 47 100% 2.55 10.59 1.07 1.38 128 2

ssca2 50 10 4 1 2 17% 0.01 0.01 0.00 0.01 256 2
ssca2+ 50 10 4 1 2 16% 0.00 0.00 0.00 0.00 512 4

vacation-high 3,223 130 24 432 12 86% 0.37 1.01 0.00 0.01 256 2
vacation-high+ 4,193 173 23 608 12 92% 0.25 0.66 0.04 0.05 512 4
vacation-low 2,420 99 22 287 8 86% 0.07 0.25 0.00 0.00 256 2
vacation-low+ 3,161 126 22 401 8 92% 0.05 0.18 0.02 0.03 512 4

yada 9,795 250 142 256 108 100% 0.52 3.06 2.51 4.35 32 2
yada+ 11,596 274 145 282 108 100% 0.45 2.04 1.38 2.52 64 8

The numbers of read and write barriers were measured with
the lazy STM and are identical for the eager STM and hybrids.
The number of read barriers varies from a low of 1 in ssca2
to a high of 608 in vacation-high+. In comparison, the
amounts of write barriers range from 2 in genome and ssca2
to 108 in yada. Overall, the number of read barriers is typically
much larger than the number of write barriers, suggesting that
designers of STMs should especially optimize read barriers.

Over 80% of the execution time is spent in transactions by
five of the eight applications: bayes, genome, labyrinth,
vacation, and yada. These applications use transactions
frequently as their algorithms continuously operate on shared
data structures. Such applications put great stress on the under-
lying TM system as any inefficiencies will be amplified by the
frequent use of transactions. STAMP also covers applications
that use transactions sporadically. Three of the benchmarks
(intruder, kmeans, and ssca2) spend less than half of
their execution time in transactions, as there are significant
portions of the code that operate on easily-identified private
data. Over all the STAMP applications, the time spent in
transactions ranges from a low of 3% in kmeans-low to a
high of 100% in labyrinth and yada.

The last transactional characteristic measured in Table VI
is the average number of times a transaction retries before
successfully committing. This statistic was measured by using
16 threads on the six TM systems, and it is highly dependent

on both the number of threads and the underlying TM system.
Moreover, the actual amount of work lost is a function of both
the number of retries and the point in the transaction at which
the retry occurs. Nevertheless, the data for the number of retries
gives quantitative evidence that the STAMP applications cover
a wide spectrum of contention cases ranging from virtually no
retries (<0.01 for ssca2+) to 10.59 retries for labyrinth+.
Finally, good contention management policies should be able to
reduce the number of retries in most of the TM systems, and the
numbers for this transactional characteristic show that STAMP
can be used to evaluate contention management policies as well.

Finally, the last two columns of Table VI, indicate two of
the working sets exhibited by each of the programs. These
values were found by setting the cache size to all power-of-2
sizes from 16 KB to 64 MB and looking for points at which
significant changes in the miss rate occurred. Like the other
columns in the table, these values cover a variety of different
scenarios. Applications in which the small working set exceeds
the capacity of the L1 cache (e.g., ssca2 and vacation) are
likely to have a significant portion of the execution time spent
on cache misses.

B. Performance Analysis for TM Systems

We measured the performance of 20 variants of the STAMP
applications on the six TM systems as we varied the number
of cores from 1 to 16. The speedup curves (normalized to se-



quential execution with code that does not have extra overhead
from the annotations for threads, transactions, or barriers) are
shown in Figure 1.

1) bayes: This application has the interesting result that
the relative performance among the TM systems is the opposite
of the expected ranking. As shown in Table VI, bayes has
relatively large read and write sets. Consequently, both of the
HTMs experience overflows and suffer large performance hits.
In particular, the lazy HTM handles overflows by temporarily
serializing execution of transactions and the eager HTM handles
overflows by using a Bloom filter to summarize the overflowed
addresses. Because the Bloom filter is conservative in nature,
it can cause the eager HTM to abort transactions more than
necessary (but never less). Transaction aborts are especially
expensive in eager data versioning TM systems as they have to
process the undo logs to rollback a transaction.

Another difference among the TM systems is the granularity
at which they detect conflicts. Because the HTMs and the
hybrids use the cache coherence protocol to also perform
TM conflict detection, they are limited to detection at line
granularity. On the other hand, the STMs are free of this
restriction and use word granularity instead. Conflict detection
at finer granularity turns out to be particularly important in this
case. The HTMs and hybrid TMs suffer from a large number
of false conflicts.

As a result, the eager HTM performs the worst among all
the TM systems and the lazy HTM does not perform much
better. In contrast, because the STMs implement data versioning
in software, they have almost no overflow-related performance
penalties and perform much better than the HTMs. As for the
hybrid TMs, their performance is between that of the HTMs and
STMs. Finally, one more thing to note about bayes is that the
execution time is sensitive to the order in which dependencies
are learned. Thus, the speedup curves are not as smooth as
those for other STAMP applications.

2) genome: Early conflict detection turns out to be disad-
vantageous in genome. For example, the eager STM has an
average number of retries per transaction almost 20× that of the
lazy STM. This conflict detection policy causes the eager STM
and eager hybrid to both experience a high number of aborts
and suffer from livelock. In comparison, the eager HTM’s
contention management policy prevents it from falling prey to
this pathology. In particular, when a transaction aborts several
times in the eager HTM, the eager HTM system promotes the
transaction’s priority level and prevents any other transactions
from aborting it. This technique allows the eager HTM to
continue making forward progress and results in its good
performance on genome.

Overall, the HTMs are about twice as fast as the lazy STM,
and the eager STM fails to scale because its eager conflict
detection results in livelock. However, among the three eager
TM systems, the relative performance is as expected, as is
that among the lazy TM systems. Finally, the performances
of the eager STM and eager hybrid will likely improve with
contention management that addresses livelock problems.

3) intruder: For the TM systems we implemented, one
advantage that the STMs and hybrids have over the HTMs
arises under workloads with high contention. TMs with a
software component can have more sophisticated contention
management policies, and in particular, the STMs and hybrids
use a randomized linear backoff scheme after a transaction
aborts. Additionally, the overhead caused by resetting the
transaction state in software (e.g., processing the software undo
logs) also serves as a backoff mechanism. In contrast, the
two HTM implementations do not use a backoff scheme and
simply restart the transaction as soon as possible. Not having a
sophisticated contention management policy is not intrinsic to
HTM, and we just chose to have a simple design.

Among the STAMP applications, intruder has a relatively
high amount of contention. Thus, whereas the performance of
the STMs and hybrids follow expected behavior, the HTMs
do not perform as anticipated. The effect is more pronounced
in the eager HTM, because aborts are more expensive in an
eager scheme (time to apply the undo log). The early conflict
detection in eager HTM also results in livelock. Hence, for this
application, there is an HTM system (eager HTM) that performs
worse than the STMs, and neither of the HTMs scale beyond 8
cores. Overall, the lazy HTM performs the best, and with more
sophisticated contention management, the HTMs will likely
scale better on this benchmark.

4) kmeans: In this benchmark, all six TM systems scale
similarly and their relative performance follows the expected
behavior; however, the actual speedups differ greatly. Because
kmeans uses transactions infrequently and has relatively short
transactions with few conflicts, the performance difference
between the corresponding eager and lazy variants is very small
for the HTM and hybrid designs. For the STMs, however, the
eager variant is noticeably faster than the lazy one because the
eager STM has shorter read barriers (the read barrier in the
lazy STM must first search in the write buffer to check if the
data have been previously written within the same transaction).
Overall, the HTMs perform 2–4× better than the STMs, and
the performance of the hybrids is about halfway between the
HTMs and STMs.

5) labyrinth: In this benchmark, early-release is used to
remove the reads generated by the grid copying operation from
the transactional read set. The usage of early-release is neces-
sary for the HTMs as all memory accesses are transparently
tracked by the hardware (i.e., implicit barriers). For the STMs
and hybrids, however, the TM system relies on the annotation
of accesses to shared objects with read and write barriers. Thus,
by not using any read barriers to perform the grid copying, the
STMs and hybrids avoid the need for early-release. As a result,
the number of read and write barriers is only proportional to the
length of the routed path instead of to the total number of grid
points. Therefore, since there are relatively few TM barriers,
all the TM systems perform similarly.

Performance differences among the TM systems occur
in labyrinth+ because of the larger data set. As noted
in Section V-A, the transactional read and write sets for
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Fig. 1: Speedups over sequential code on each of the six TM implementations. Application variants that use the larger data set are indicated
by a ’+’ appended to the application name. The suffixes -low and -high indicate variants with low and with high contention, respectively.



labyrinth+ are comparable to the size of the L1 cache. This
causes both HTMs to overflow and pay performance penalties.
Moreover, recall that the eager HTM handles overflows by
recording overflowed addresses in a Bloom filter. To ensure
correctness, the eager HTM cannot perform early-release on
addresses that hit in the Bloom filter. This causes the eager
HTM to perform worse than the lazy HTM as its transactions
abort more frequently. In contrast to the HTMs, the STMs
and hybrids do not experience overflow-related performance
problems as the data versioning is handled in software. Thus,
their performance is about the same as with the small data set.

6) ssca2: Like kmeans, ssca2 has very short transac-
tions with very small read and write sets, and less than 20%
of the execution time is spent in transactions. Consequently, all
TM systems perform well and operate with minimal overhead.
Overall, the relative ranking among the six TM systems is as
expected.

7) vacation: All the TM systems follow the expected
behavior in vacation except for the eager HTM and eager
hybrid. As in bayes, conflict detection at a finer granularity is
particularly advantageous, and Table VI shows that the STMs’
word-level granularity conflict detection leads to much fewer
aborts than the HTMs’ line-level granularity conflict detection.
However, for the STMs, the performance advantage gained
by finer granularity conflict detection is outweighed by the
overhead caused by the large number of read barriers used to
provide concurrent accesses to the database trees.

Finally, for the HTMs and hybrids, lazy data versioning is
more advantageous than eager data versioning. In the latter
scheme, transaction aborts are more expensive as an eager
data versioning TM system must apply undo logs to rollback
a transaction. Thus, when coupled with the moderately long
transactions in vacation, the eager HTM performs much
worse than the lazy HTM and the same pattern is seen between
the two hybrids. At 16 cores in vacation-high, the large
amount of work lost to violations in the eager HTM even causes
its performance to fall below that of the lazy hybrid.

8) yada: In yada, transactions have relatively large read
and write sets, which cause the HTMs to suffer from overflows.
In the lazy HTM, overflows cause temporary serialization of
transactions, and in the eager HTM, overflows cause more fre-
quent transaction aborts. On the other hand, the large numbers
of read and write barriers do not cause the STMs to incur a
significant performance penalty.

As a result, in yada the lazy HTM performs the best and
is closely followed by the hybrids and eager STM. Because
transaction aborts are expensive for TMs with eager versioning
(time to process the undo log), the eager HTM is only able to
outperform the lazy STM. With the larger data set in yada+,
however, overflows are more expensive because transactions
are longer. This causes the lazy HTM to serialize transactions
for longer periods of time and the eager HTM to lose more
work to transaction aborts. Consequently, the performance of
the hybrids and STMs relative to the HTMs improves.

C. Performance Summary

In general, the applications in STAMP perform well with all
six TM systems. In most cases, there are significant speedups
and the relative differences among HTM, hybrid, and STM
systems were as expected. However, there were a few cases
where the conventional wisdom did not hold. In bayes and
labyrinth+, for example, the performance of the HTMs suf-
fered because the large number of transactional reads generated
overflows, causing either transaction execution to become seri-
alized (lazy HTM) or excessive aborts to occur (eager HTM).
In bayes, the finer granularity in conflict detection allowed
STMs to unexpectedly outperform both the HTMs and the
hybrids. Comparing the HTM systems, the results indicate that
the two schemes (eager and lazy) either perform similarly (e.g.,
kmeans and genome), or the lazy HTM system performed
better as it guarantees forward progress in high contention
scenarios (e.g., intruder and vacation-high).

None of the shortcomings of the six TM systems identified
above are necessarily fundamental. Future research may be
able to address them and remove the resulting performance
loss. Our point is that STAMP’s coverage of a diverse set of
scenarios in transactional execution allows us to stress each
TM system thoroughly and identify its (sometimes unexpected)
shortcomings. Hence, STAMP can be a valuable tool for future
research on TM systems.

VI. CONCLUSIONS

In creating STAMP, we sought to create the first benchmark
suite for TM that adequately addressed breadth in application
domains and algorithms well suited for programming with
transactions, depth in stressing a wide range of transactional
execution cases, and portability across a wide range of TM
systems. To demonstrate these properties we ran 20 variants of
the eight STAMP applications on six different TM systems. All
the measured transactional characteristics ranged at least two
orders of magnitude, and although the TM systems’ relative
performance was often the expected behavior, STAMP helped
identify cases that contradict conventional wisdom and require
further research.

The source code for STAMP is freely available from
http://stamp.stanford.edu. It is our hope that
STAMP will help address a great need in the TM research
community by providing a comprehensive tool to help people
design and evaluate TM systems. Already there are many early
adopters of STAMP in both industry and academia [7, 10].
Future work for STAMP includes the addition of more bench-
marks to cover even more scenarios.
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