Thread-Safe
Dynamic Binary Translation
using Transactional Memory

JaeWoong Chung, Michael Dalton, Hari Kannan,
Christos Kozyrakis

Computer Systems Laboratory
Stanford University
http://csl.stanford.edu

Dynamic Binary Translation (DBT)

m DBT

= Short code sequence Is translated in run-time
= PIN, Valgrind, DynamoRIO, StarDBT, etc

O) DBT Tool (>)

Original J — Translated
(3 Binary DBT Framework Binary

m DBT use cases
= Translation on new target architecture
= JIT optimizations in virtual machines
= Binary instrumentation
m Profiling, security, debugging, ...

DBT+TM, HPCA'08

Example: Dynamic Information Flow
Tracking (DIFT)

t = XX ; /[untrusted data from network
taint(t) = 1,

Variables
swap t, ul;

swap taint(t), taint(ul);
uz2 =ul;
taint(u2) = taint(ul);
m Untrusted data are tracked throughout execution
= A taint bit per memory byte is used to track untrusted data.
m Security policy uses the taint bit.

m E.g. untrusted data should not be used as syscall argument.

Taint bits

s Dynamic instrumentation to propagate and check taint bit.

DBT+TM, HPCA'08

DBT & Multithreading

= Multithreaded executables as input

m Challenges
= Atomicity of target instructions
m e.0. compare-and-exchange
= Atomicity of additional instrumentation
m Races In accesses to application data & DBT metadata

m Easy but unsatisfactory solutions
= Do not allow multithreaded programs (StarDBT)
= Serialize multithreaded execution (Valgrind)

DBT+TM, HPCA'08

DIFT Example:
MetaData Race = Security Breach

m User code uses atomic instructions.
m After instrumentation, there are races on taint bits.
Thread 1 Thread?2

—) swap t, ul;

u2=ul; <=

taint(u2) = taint(ul); <=
) swap taint(t), taint(ul);

Variables

Taint bits

DBT+TM, HPCA'08

Can We Fix It with Locks?

m |ldea
= Enclose access to data and associated metadata, within a locked region.

= Problems
m Coarse-grained locks
m performance degradation
= Fine-grained locks
m locking overhead, convoying, limited scope of DBT optimizations
= Lock nesting between app & DBT locks
m potential deadlock
= Tool developers should be a feature + multithreading experts.

DBT+TM, HPCA'08

Transactional Memory

m Atomic and isolated execution of a group of instructions
= All or no instructions are executed.
= Intermediate results are not seen by other transactions.

m Programmer
= A transaction encloses a group of instructions.

= The transaction is executed sequentially with the other transactions and
non-transactional instructions.

m M system
= Parallel transaction execution.
= Register checkpoint, data versioning, conflict detection, rollback.
= Hardware, software, or hybrid TM implementation.

DBT+TM, HPCA'08

Transaction for DBT

m |dea

= DBT instruments a transaction to enclose accesses to (data, metadata)
within the transaction boundary.

Thread 1 Thread?2

TX _Begin TX _Begin

swap t, ul; u2 = ul;

swap taint(t), taint(ul); taint(u2) = taint(ul);
TX _End TX End

= Advantages
= Atomic execution
= High performance through optimistic concurrency
= Support for nested transactions

DBT+TM, HPCA'08

Yes, It fixes the problem. But ...

DBT transaction per instruction is heavy.

User locks are nested with DBT transactions.

User transactions overlap partially with DBT transactions.
There will be I/O operations within DBT transactions.

User-coded conditional synchronization may be tricky.

Transactions are not free.

DBT+TM, HPCA'08

Granularity of Transaction
Instrumentation

Per Instruction
= High overhead of executing TX_Begin and TX End
= Limited scope for DBT optimizations

Per basic block
= Amortizing the TX Begin and TX_ End overhead
m Easy to match TX Begin and TX End

Per trace
= Further amortization of the overhead
= Potentially high transaction conflict

Profile-based sizing
= Optimize transaction size based on transaction abort ratio

DBT+TM, HPCA'08

Interaction with Application Code (1)

m User lock’s semantics should be preserved regardless of DBT
transactions.
= If transaction 2 locked region, fine.
m To TM, lock variables are just shared variables.
= If transaction C locked region, fine.
m Transactions are executed in critical sections protected with locks.
= If partially overlapped, split the DBT transaction.

m User transactions may partially overlap with DBT transactions.
= If fully nested, fine.
m Either true transaction nesting or subsumption.
= If partially overlapping, split the DBT transaction.

DBT+TM, HPCA'08

Interaction with Application Code (2)

= |/O operations are not rolled back.
= Terminate the DBT transaction.
m Typically, they work as barriers in DBT’s optimization.

m Conditional synchronization may cause live-lock.
= Re-optimize the code to have a transaction per basic block.

Initially, donel = done2 = false
Thread 1 Thread 2
TX _Begin TX Begin

@ while(ldone2); <——= dc.)ne2:true;
(3) donel = true; = while(!donel);

TX_End TX_End

DBT+TM, HPCA'08

Evaluation Environment

s DBT framework
= PIN v2.0 with multithreading support
= DIFT as a PIN tool example

m Execution environment
= Xx86 server with 4 dual-core processors
s Software TM system

= Multithreaded applications
= 6 from SPLASH
= 3 from SPECOmp

DBT+TM, HPCA'08

Baseline Performance Results

)
>
O
o
@
N
©
=
o
Z

Barnes Equake Fmm Radiosity Radix Swim Tomcatv Water Water-
spatial

m 41 % overhead on the average
= Transaction at the DBT trace granularity

DBT+TM, HPCA'08

Transaction Overheads

= Transaction begin/end
= Register checkpoint
= Initializing and cleaning TM metadata

m Per memory access
= Tracking the read-set & write-set
s Detecting conflicts
= Data versioning

m Transaction abort
= Applying logs and restarting the transaction

= In our tests, 0.03% of transactions abort

DBT+TM, HPCA'08

Transaction Begin/End Overhead

—— Barnes

Equake

\\\

)
S
o
@
)
L
S
]
>
O
°
@
N
©
£
o
Z

1 2 4 8

Number of basic blocks per transaction Tomcatv

m Transaction Sizing
= Longer TX amortizes the TX_Begin/End overhead.

DBT+TM, HPCA’08

Per Memory Access Overhead

m Instrumentation of software TM barrier
TX Begin
read_barrier(t);
write_barrier(u);
u=rt;
read_barrier(taint(t));
write_barrier(taint(u));
taint(u) = taint(t);

TX end

= \What happens in the barrier?
= Conflict detection by recording addresses
m Observation 1 : needed only for shared variables
= Data versioning by logging old values
m Observation 2 : not needed for stack variables

DBT+TM, HPCA'08

Software Transaction Optimization (1)

m Categorization of memory access types

‘ Data Versioning
() Conflict Detection
Y
e \

v X _Begin? N
/ \

IDEMPOTENT STACK PRIVATE

STACK
@ ©

BENIGN RACE SHARED

@ ® O

DBT+TM, HPCA'08

Software Transaction Optimization (2)

)

o)
S
S

m Baseline

m BENIGN
RACE

barnes equake fmm radiosity radix swim tomcatv water water-
spatial

S
T
@
&
c
S
o
>
O
S
@
N
[
S
S
O
Z

= Average runtime overhead
= 36% with STACK
= 34% with BENIGN RACE

DBT+TM, HPCA’08

Hardware Acceleration (1)

m \With software optimization, the overhead is about 35%.

= Emulating 3 types of hardware acceleration
m Cycles spent in transaction violation is under 0.03%.

Register Conflict Data
Checkpointing Detection Versioning

STM+ HW SW read-set / SW
(single-cycle) write-set Undo-log
HybridTM HW HW SW
(single-cycle) Signatures Undo-log
HTM HW HW read-set / HW
(single-cycle) write-set Undo-log

DBT+TM, HPCA’08

Hardware Acceleration (2)

(o)}

o

3
\

<
S
g®)
®
()]
e
-
()]
>
o
@)
(D)
N
T
£
j -
(@]
zZ

Barnes Equake FMM Radiosity Radix Swim Tomcatv Water Water-
Spatial

m Overhead reduction
m 28% with STM+, 12% with HybridTM, and 6% with HTM
= Notice the diminishing return

DBT+TM, HPCA’08

Conclusion

Multi-threaded executables are a challenge for DBT in the era
of multi-core.
= Races on metadata access

Use transactions for multi-threaded translated code.
= 41% overhead on average

With software optimization, the overhead Is around 35%.
= Further software optimization may be possible.

Hardware acceleration reduces the overhead down to 6%.
= Remember the diminishing return.

DBT+TM, HPCA'08

