A Scalable, Non-blocking Approach to
Transactional Memory

Hassan Chafi Jared Casper Brian D. Carlstrom
Austen McDonald Chi Cao Minh Woongki Baek

Christos Kozyrakis Kunle Olukotun

Computer System Laboratory
Stanford University
http://tcc.stanford.edu

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Transactional Memory

Problem: Parallel Programming is hard and expensive.

= Correctness vs. performance

Solution: Transactional Memory
» Programmer-defined isolated, atomic regions

» Easy to program, comparable performance to fine-grained locking

* Done in software (STM), hardware (HTM), or »oth (Hybrid)

Conflict Detection

= Optimistic: Deject conflicts at transaction boundaries

» Pessimistic: Detect conflicts during execution

Versign management

@ culative writes kept in cache until end of transaction

= Eager: Speculatively write “in place”, roll back on abort

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

So what'’s the prOblem? (Haven’t we figured this out already?)

Cores are the new GHz

* Trendis 2x cores /2 years: 2in ‘05,4 in ‘07, > 16 not far away

= Sun: N2 has 8 cores with 8 threads = 64 threads

It takes a lot to adopt a new programming model
= Must last tens of years without much tweaking

* Transactional Memory must (eventually) scale to 100s of processors

TM studies so far use a small number of cores!

= Assume broadcast snooping protocol

If it does not scale, it does not matter

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Lazy optimistic vs. Eager pessimistic

High contention

= Eager pessimistic = Lazy optimistic

. Serializes due to blocking - Optimistic parallelism

- Slower aborts (result of undo log) + Fastaborts

Low contention

= Eager pessimistic » Lazy optimistic

- Fast commits - Slower commits... good enough??

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

What are we going to do about it?

e Serial commit = Parallel commit

= At 256 proc, if 5% of the work is serial, maximum speedup is 18.6x

* Two-phase commit using directories
* Write-through = write-back
» Bandwidth requirements must scale nicely
= Again, using directories
* Rest of talk:
» Augmenting TCC with directories

= Does it work?

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Protocol Overview

* During the transaction
= Track read and write sets in the cache
» Track sharers of a line in the directory

 Two-phase commit

= Validation: Mark all lines in write-set in directories

- Locks line from being written by another transaction

= Commit: Invalidate all sharers of marked lines

- Dirty lines become “owned” in directory
* Require global ordering of transactions

» Use a Global Transaction ID (TID) Vendor

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Directory Structure

Directory
Address POShg:ers. .ITIS:DN Marked | Owned
0x0000 | Now Serving TID (NSTID) |
0x0004
..... | Skip Vector |
0x1000

» Directory tracks sharers of each line at home node

» Marked bit is used in the protocol

 Now serving TID: transaction currently being serviced by directory
» Used to ensure a global ordering of transactions
= Skip vector used to help manage NSTID (see paper)

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Cache Structure

Cache

Dirty | Valid | SR |SM | Tag Data |SharingVector|

| Writing Vector |

« Each cache line tracks if it was speculatively read (SR) or modified (SM)
= Meaning that line was read or written in the current transaction

« Sharing and Writing vectors remember directories read from or written to
= Simple bit vector

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Commit procedure

 Validation

Request TID
» |nform all directories not in writing vector we will not be writing to them (Skip)
» Request NSTID of all directories in writing vector

Wait until all NSTIDs = our TID

= Mark all lines that we have modified

Can happen in parallel to getting NSTIDs

» Request NSTID of all directories in sharing vector
Wait until all NSTIDs = our TID

« Commit
= [nform all directories in writing vector of commit

= Directory invalidates all other copies of written line, and marks line owned

Invalidation may violate other transaction

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Parallel Commit Example

LD Y
STY

Commit

Load Y

NSTID: 1 Directory O

P1 P2 M O Load X
X @]
LD X
Data Y TID ST X
Vendor Data X Commit

P1 P2

NSTID: 1 Directory 1

M O

Y| @]

A Scalable, Non-blocking Approach to Transactional Memory

HPCA 2007

Parallel Commit Example

NSTID: 1 Directory O
P1 P2 M O

X| @] |

LDY -
STY TN 15 Req. TID
Commit P1 >
Vendor
W A
TID =1 TID =2

NSTID: 1 Directory 1
P1 P2 M O

Vi@l || |

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Parallel Commit Example

Skip 1

LD Y
STY

Commit NSTID:1

NSTID:3 Directory 1

NSTID Probe

NSTID:2 Directory O

P1 P2 M O
X @[]
TID
Vendor| NSTID: 2

P1 P2

M O

Y @)

A Scalable, Non-blocking Approach to Transactional Memory

NSTID Probe
LD X
ST X
Commit
Skip2

HPCA 2007

Parallel Commit Example

LDY
STY
Commit

Mark Y

A Scalable, Non-blocking Approach to Transac

NSTID: 2 DirectoryO

P1 P2

X[@}

TID

Vendor

NSTID: 1 Directory 1

P1 P2

Y @)

M
|- @]

tional Memory

Mark X

LD X
ST X
Commit

HPCA 2007

Parallel Commit Example

LD Y
STY

Commit

Commit

NSTID: 2 Directory 0

P1 P2 M O
X] 1010e
TID
Vendor

NSTID: 1 Directory 1

P1 P2

M O

Y @)

| @@

A Scalable, Non-blocking Approach to Transactional Memory

Commit

LD X
ST X

Commit

HPCA 2007

Conflict Resolution Example

LD Y

LD X

ST X
Commit

Load Y

NSTID: 1 Directory O

P1 P2 M O Load X
X @]
LD X
Data Y TID ST X
Vendor Data X Co.r.r;mit

P1 P2

NSTID: 1 Directory 1

M O

Y| @]

A Scalable, Non-blocking Approach to Transactional Memory

HPCA 2007

Conflict Resolution Example

NSTID: 1 Directory O
P1 P2 M O

[X | @@ | |

LD Y LD X

LD X

ST X o TID STX
Commit TID Rea. Vendor Commit

TID =1

NSTID: 1 Directory 1
P1 P2 M O

Vi@l || |

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Conflict Resolution Example

LD Y

LD X

ST X
Commit

NSTID Probe

NSTID: 1 Directory O

P1 P2 M O NSTID Probe
X @@ | |
LD X
TID TID Reaq. ST X
< -
Vendor Commit
\

NSTID: 2 Directory 1

P1 P2

M O

Y | @)

A Scalable, Non-blocking Approach to Transactional Memory

TID=2

HPCA 2007

Conflict Resolution Example

NSTID: 1 Directory O

X @@ @ NSTID: 1

LD Y LD X
STX TID STX
Commit Vendor Commt

NSTID: 2 Directory 1
P1 P2 M O Skip 2

Vi@l || |

NSTID Probe

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Conflict Resolution Example

Commit

LD Y

LD X

ST X
Commit

P

NSTID: 2 DirectoryO
P1 P2

X | @@ IOIQ

TID
Vendor

NSTID: 3 Directory 1
P1 P2 M O

Vi@l || |

A Scalable, Non-blocking Approach to Transactional Memory

Invalidate X

\Violation!

LD X
ST X

Commit

HPCA 2007

Conflict Resolution Example (Write-back)

NSTID: 2 Directory 0
P1 P2 M O Load X

@ ® | ®

Request: X

WB: X D X
TID ST X
Vendor Commit

NSTID: 3 Directory 1
P1 P2 M O

Vi@l || |

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Evaluation environment

CPU 1 - 64 single-issue PowerPC cores
L1 32 KB, 32 byte cache line, 4-way, 1 cycle latency
L2 512 KB, 32 byte cache line, 8-way, 16 cycle latency

Interconnection | 2D grid topology, 14 cycle link latency

Main Memory | 100 cycle latency

Directory 1 per node, 10 cycle latency

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

It Scales!

[0 Useful M Cache Miss [1idle HCommit lViolations

< 18 '
GEJ 16 57x =
i= 14 -
S 12 -
§ 10 -
I 8
g0
s 4
s o i@ ﬁ
o
Z 0 -
16 32 64 16 32 64 16 32 64 16 32 64
barnes radix SVM Classify equake

e Commit time (red) 1s small and decreasing, or non-existent

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Results for small transactions

HUseful BCache Miss Oldle BCommit WViolations e Small transactions with a

lot of communication

~ 16
S magnifies commit latency
o 141 .
£ Commit overhead does not
|; 12 grow with processor
010 - count, even in the worst
2 ;- case
0
i g
T
N4 l H
[
E 2 | I i:
s N
Z 0' T T
8§ 16 32 64 8§ 16 32 64
volrend water
nsquared

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Latency Tolerance

E Useful ECache Miss [idle EHCommit H Violations

7 14 28 7 14 28 7 14 28

Cycles-per-hop
swim radix water-spatial

(&)

B

N

-

Normalized Execution Time (%)
W

o

e 32 Processor system

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Remote traffic bandwidth

I Shared B Write-back [CDMiss BB Overhead
0.30

0.25

0.20

0.15

0.10

0.00 ;_Hi 1 =

barnes Cluster equake radix swim volrend water

o
o
&)

Bytes per instruction

e Comparable to published SPLASH-2
« Total bandwidth needed (at 2 GHz) between 2.5 MBps and 160 MBps

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Take home

« Transactional Memory systems must scale for TM to be useful

« Lazy optimistic TM systems have inherent benefits
= Non-blocking
= Fast abort

« Lazy optimistic TM system scale
» Fast parallel commit

= Bandwidth efficiency through write-back commit

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Questions?

Jared Casper
jaredc@stanford.edu

Computer Systems Lab
Stanford University
http://tcc.stanford.edu

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007

Single Processor Breakdown

@ Useful @ Cache Miss [Jidle M Commit

100% -
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -
10% -
0% -

barnes Cluster GA radix swim volrend water-
nsquared

« Low single processor overhead = scaling numbers aren’t “fake”

A Scalable, Non-blocking Approach to Transac tional Memory HPCA 2007

Scalable TCC Hardware

Negtawr
Processor
Load/Store Load/Store & ""icla‘nn
Address Data i Commit
| \J
Sh'l'o’a
Address 9
FIFO E plv sr.. S, TAG DATA
% ﬂ o e 2-parkes srge-poied) 'l‘.'l"..‘l(_;
Veactor
[4
Commit Commit
Address ’ A Data
v v
Snoap Fll Cammit
Cantrol Cantrol Caontro
[} [}
Cammit Commst Ratll Commet Commit
Address In Data In Data Data Ouwt Address Out
\ A |

C-DF]'Y'UNCG'. an
Assist (CA)

A Scalable, Non-blocking Approach to Transactional Memory

Node 0

TCC Processor

Main Memory

Directory

Interconnection Network

HPCA 2007

Transactional Memory: Lay of the Land

Version Management
Lazy Eager

Pros: Non-blocking
Straight forward model

Optimistic Fast abort

Cons: “Wasted” execution
Slow commit
Write-through

Conflict TCC, Bulk
Detection
Pros:Non-blocking Pros: Less “wasted” execution
Less “wasted” execution Fast commit
Fast abort Write-back/MESI
Eager Cons:Live-lock issues Cons: Blocking

Slow commit Live-lock issues

Frequent Aborts Slow abort
VTM, LTM LogTM, UTM

HPCA 2007

A Scalable, Non-blocking Approach to Transactional Memory

