
A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 1

A Scalable, Non-blocking Approach to
Transactional Memory

Hassan Chafi
Austen McDonald

Jared Casper
Chi Cao Minh

Brian D. Carlstrom
Woongki Baek

Christos Kozyrakis Kunle Olukotun

Computer System Laboratory
Stanford University

http://tcc.stanford.edu

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 2

Transactional Memory

• Problem: Parallel Programming is hard and expensive.

 Correctness vs. performance

• Solution: Transactional Memory

 Programmer-defined isolated, atomic regions

 Easy to program, comparable performance to fine-grained locking

 Done in software (STM), hardware (HTM), or both (Hybrid)

• Conflict Detection

 Optimistic: Detect conflicts at transaction boundaries

 Pessimistic: Detect conflicts during execution

• Version management

 Lazy: Speculative writes kept in cache until end of transaction

 Eager: Speculatively write “in place”, roll back on abort

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 3

So what’s the problem? (Haven’t we figured this out already?)

• Cores are the new GHz

 Trend is 2x cores / 2 years: 2 in ‘05, 4 in ‘07, > 16 not far away

 Sun: N2 has 8 cores with 8 threads = 64 threads

• It takes a lot to adopt a new programming model

 Must last tens of years without much tweaking

 Transactional Memory must (eventually) scale to 100s of processors

• TM studies so far use a small number of cores!

 Assume broadcast snooping protocol

• If it does not scale, it does not matter

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 4

Lazy optimistic vs. Eager pessimistic

High contention

 Eager pessimistic

• Serializes due to blocking

• Slower aborts (result of undo log)

Low contention
 Eager pessimistic

• Fast commits

 Lazy optimistic

• Optimistic parallelism

• Fast aborts

 Lazy optimistic

• Slower commits… good enough??

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 5

• Serial commit ⇒ Parallel commit

 At 256 proc, if 5% of the work is serial, maximum speedup is 18.6x

 Two-phase commit using directories

• Write-through ⇒ write-back

 Bandwidth requirements must scale nicely

 Again, using directories

• Rest of talk:

 Augmenting TCC with directories

 Does it work?

What are we going to do about it?

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 6

Protocol Overview

• During the transaction

 Track read and write sets in the cache

 Track sharers of a line in the directory

• Two-phase commit

 Validation: Mark all lines in write-set in directories

• Locks line from being written by another transaction

 Commit: Invalidate all sharers of marked lines

• Dirty lines become “owned” in directory

• Require global ordering of transactions

 Use a Global Transaction ID (TID) Vendor

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 7

Directory Structure

0x1000
…..

0x0004
0x0000

OwnedMarkedPN…P1P0Address Sharers List

Directory

Now Serving TID (NSTID)

Skip Vector

• Directory tracks sharers of each line at home node
 Marked bit is used in the protocol

• Now serving TID: transaction currently being serviced by directory
 Used to ensure a global ordering of transactions
 Skip vector used to help manage NSTID (see paper)

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 8

Cache Structure

DataTagSMSRValidDirty

Cache

Sharing Vector

Writing Vector

• Each cache line tracks if it was speculatively read (SR) or modified (SM)
 Meaning that line was read or written in the current transaction

• Sharing and Writing vectors remember directories read from or written to
 Simple bit vector

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 9

Commit procedure

• Validation

 Request TID

 Inform all directories not in writing vector we will not be writing to them (Skip)

 Request NSTID of all directories in writing vector

• Wait until all NSTIDs ≥ our TID

 Mark all lines that we have modified
• Can happen in parallel to getting NSTIDs

 Request NSTID of all directories in sharing vector
• Wait until all NSTIDs ≥ our TID

• Commit

 Inform all directories in writing vector of commit

 Directory invalidates all other copies of written line, and marks line owned
• Invalidation may violate other transaction

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 10

Parallel Commit Example

NSTID: 1 Directory 0
 P1 P2 M O
 X …

NSTID: 1 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

Tid:?
P2

Tid:?
P1

Load X

Data X
Data Y

Load Y

LD Y
ST Y

Commit

LD X
ST X

Commit

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 11

P2P1

Parallel Commit Example

NSTID: 1 Directory 0
 P1 P2 M O
 X …

NSTID: 1 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

LD Y
ST Y

Commit

LD X
ST X

Commit
TID Req.

TID =1

TID Req.

TID = 2

Tid:2Tid:1Tid:? Tid:?

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 12

NSTID:1

Parallel Commit Example

 Directory 0
 P1 P2 M O
 X …

 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

Tid:2
P2

Tid:1
P1

NSTID Probe

NSTID Probe

LD Y
ST Y

Commit

LD X
ST X

Commit

NSTID:2NSTID:1
Skip 1

Skip2

NSTID:1
NSTID: 2

NSTID:3

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 13

Parallel Commit Example

NSTID: 2 Directory 0
 P1 P2 M O
 X …

NSTID: 1 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

Tid:2
P2

Tid:1
P1

Mark X

Mark Y

LD Y
ST Y

Commit

LD X
ST X

Commit

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 14

Parallel Commit Example

NSTID: 2 Directory 0
 P1 P2 M O
 X …

NSTID: 1 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

Tid:2
P2

Tid:1
P1

Commit

Commit

LD Y
ST Y

Commit

LD X
ST X

Commit

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 15

Conflict Resolution Example

NSTID: 1 Directory 0
 P1 P2 M O
 X …

NSTID: 1 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

Tid:?
P2

Tid:?
P1

Load X

Data X
Data Y

Load Y

LD Y
LD X
ST X

Commit

LD X
ST X

Commit
…

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 16

Conflict Resolution Example

NSTID: 1 Directory 0
 P1 P2 M O
 X …

NSTID: 1 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

Tid:?
P2

Tid:? Data X

Load X

TID Req.

TID =1

P1

LD Y
LD X
ST X

Commit

LD X
ST X

Commit
…

Tid:1

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 17

Conflict Resolution Example

NSTID: 1 Directory 0
 P1 P2 M O
 X …

 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

Tid:xTid:1
P1

NSTID ProbeNSTID Probe

TID Req.

TID = 2
Skip 1

P2
Tid:2

NSTID: 1NSTID: 2

LD X
ST X

Commit
…

LD Y
LD X
ST X

Commit

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 18

Conflict Resolution Example

NSTID: 1 Directory 0
 P1 P2 M O
 X …

 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

Tid:2
P2

Tid:1
P1

NSTID: 1

Mark: X

NSTID Probe

NSTID: 3

Skip 2

NSTID: 1

NSTID: 2NSTID: 3

LD X
ST X

Commit
…

LD Y
LD X
ST X

Commit

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 19

Conflict Resolution Example

 Directory 0
 P1 P2 M O
 X …

NSTID: 3 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

Tid:2
P2

Tid:1
P1

Commit Invalidate X

Violation!

LD X
ST X

Commit
…

LD Y
LD X
ST X

Commit

NSTID: 1NSTID: 2

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 20

Conflict Resolution Example (Write-back)

NSTID: 2 Directory 0
 P1 P2 M O
 X …

NSTID: 3 Directory 1
 P1 P2 M O
 Y …

TID
Vendor

Tid:2
P2

Tid:1
P1

Request: X

WB: X Data X

Load X

LD X
ST X

Commit
…

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 21

Evaluation environment

1 per node, 10 cycle latencyDirectory

100 cycle latencyMain Memory

2D grid topology, 14 cycle link latencyInterconnection

512 KB, 32 byte cache line, 8-way, 16 cycle latencyL2

32 KB, 32 byte cache line, 4-way, 1 cycle latencyL1

1 - 64 single-issue PowerPC coresCPU

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 22

It Scales!

barnes radix SVM Classify equake

57x!

• Commit time (red) is small and decreasing, or non-existent

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 23

Results for small transactions

volrend water
nsquared

• Small transactions with a
lot of communication
magnifies commit latency

• Commit overhead does not
grow with processor
count, even in the worst
case

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 24

Latency Tolerance

swim radix water-spatial

• 32 Processor system

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 25

Remote traffic bandwidth

• Comparable to published SPLASH-2
• Total bandwidth needed (at 2 GHz) between 2.5 MBps and 160 MBps

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 26

Take home

• Transactional Memory systems must scale for TM to be useful

• Lazy optimistic TM systems have inherent benefits

 Non-blocking

 Fast abort

• Lazy optimistic TM system scale

 Fast parallel commit

 Bandwidth efficiency through write-back commit

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 27

Questions?

Whew!

Jared Casper
jaredc@stanford.edu

Computer Systems Lab
Stanford University

http://tcc.stanford.edu

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 28

Single Processor Breakdown

 Low single processor overhead ⇒ scaling numbers aren’t “fake”

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 29

Scalable TCC Hardware

A Scalable, Non-blocking Approach to Transactional Memory HPCA 2007 30

Transactional Memory: Lay of the Land
Version Management

Lazy

Eager

Optimistic

Eager

Conflict
Detection

Pros:
Straight forward model
Non-blocking

Cons: “Wasted” execution
Slow commit

Fast abort

Write-through

TCC, Bulk

Pros:

Cons:

Fast commit
Less “wasted” execution

Blocking
Live-lock issues

Write-back/MESI

Slow abort

LogTM, UTMVTM, LTM

Pros:
Less “wasted” execution
Non-blocking

Cons:Live-lock issues
Slow commit

Fast abort

Frequent Aborts

