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The Parallel Programming Problem

CMPs are here but no parallel software to run on them

Lock-based parallel programming is simply broken

m Coarse-grained locks: serialization

m Fine-grained locks: deadlocks, races, priority inversion, ...
m Poor composability, not fault-tolerant, ...

Transactional Memory (TM): an promising alternative
m Transactions: atomic & isolated access to shared-memory
m Performance through optimistic concurrency

Parallel programming with TM

m Coarse grain Non-blocking synchronization for parallel
algorithms

m Speculative parallelization for sequential algorithms




The Design Space for TM

m A transactional memory system provides

m Basics: versioning, conflict resolution, commit, abort
m Desired: nesting for libraries, virtualization

Several proposed designs
Software-only: [DSTM], [OSTM], [ASTM], [SXM], [MCRT-STM]
Hardware-assisted: [TLR], [TCC], [U/LTM], [VTM], [LogTM]
Hybrids: [HyTM], [Hybrid-TM]
Different tradeoffs in implementing basic/desired features

m Key questions
m Which is the common case to optimize for?




In Search of the Common Case

m Key metrics of transactional program
Transaction length
m Cost of fixed overheads, time virtualization issues
Read-/write-set size
m Buffer space requirements, buffer virtualization issues
Write-set to length ratio
s Amortize commit/abort overheads

Frequency of nesting & I/O in transactions
m Support for nesting, syscalls, ...

Frequency of conflicts
m Scheduling and contention management policies

m [he “chicken & egg problem”

m Programmers need efficient TM systems to support development
m Designers need TM applications to derive common case

m Can we break the deadlock?




Paper Summary

m Study the TM behavior of existing parallel programs
m Map existing parallel constructs to transactions
m 36 applications, multiple domains, 4 programming models

m Analyzed common case for

m Transaction length, read-/write-set size, write-set to length ratio,
nesting & I/O

m For both non-blocking synchronization & spec. parallelization
m Implementation agnostic measurements

m Derived guidelines for TM system design

m Buffering requirements and virtualization approach
m Overhead amortization, nesting & 1/O support, ...




Methodology Overview

m  Key assumption

s The inherent parallelism & synchronization patterns are
likely the same regardless of language primitives used

m Methodology
1. Trace parallel application on existing hardware

2. Map parallel constructs to transaction boundaries
m E.g. lock/unlock -> transaction begin/end

3. Process trace to analyze metrics

m Measurements are agnostic to TM design
m Limitation: cannot measure violation behavior




Non-blocking
Synchronization

ll

Parallel Applications

MolDyn, MonteCarlo, RayTracer, Crypt, LUFact,
Series, SOR, SparseMatmult, SPECjbb2000, PMD,
HSQLDB

Pthread

Apache, Kingate, Bp-vision, Localize, Ultra Tic Tac Toe,
MPEG2, AOL Server

ANL

Barnes, Mp3d, Ocean, Radix, FMM, Cholesky,
Radiosity, FFT, Volrend, Water-N2, Water-Spatial

Speculative
Parallelism

OpenMP

APPLU, Equake, Art, Swim, CG, BT, IS

Different domains : scientific, enterprise, Al/robotics, multimedia

Different qualities : highly optimized Vs. less optimized
Java, Pthreads, ANL — studied for non-blocking synchronizations

OpenMP - studied for speculative parallelization




Non-Blocking Synchronization

m Transactions are used for critical sections in parallel algorithms

m  Original primitives mapped to transactional boundaries

m E.g. Java synchronized block, pthread mutex, ANL LOCK macro
mapped transaction boundaries

m  Semantics issue
m To conserve the original program semantics, wait splits transaction
m This mapping is not always safe, but was fine in our study

iction
Viapping

Unlock

Wait END-BEGIN




Transaction Length

m Number of instructions executed in transaction

Application Avg

Java average 13519488
Pthreads average 22591

ANL average 16782

4|

Up to 95% of transactions have less than 5000 instructions

=> Light-weight transactional primitives are required

Some programs have rare but long transactions

=> Time virtualization is needed (transaction context-switching)
9




Time Virtualization for TM

m [nterrupt and context-switch procedure

Other

Interrupt

:

Yes 1

Wait for a short xaction to
finish; use its CPU
for interrupt

Common
case

Abort a young xaction;
use its CPU for
interrupt

I proposals

Swap out xaction
to VM; use its CPU
for interrupt

Rare case!

Handle in VM
software

[Satya94][Chen97]




(%]
(]
+—
>
o]
X
£
()
N
w
4
Q
)
©
@
)
o

=
o

=

0.1

Read-/Write-Set Size

m Bytes of data read/written by transaction
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98% of transactions: <16KB read-set, <6KB write set
=> 32K L1 Cache will be enough for most transactions
There are few very large transaction > 32K

=> space virtualization is needed but it's better be cheap




Write-Set to Length Ratio

m Ratio of # uniqgue addresses written to # instructions in transaction

. @ @ @ @000 o RRARAR AR AR AR ARARAS A AT

et ANL
=8 Java
Pthreads

c
o
-
Q
@©
[%2]
C
@
S
|_
Y
o
(8]
(o))
@
)
c
()
o
S
)
o

20%
Write-Set Size to Transaction Length Ratio
m < 25% In most transactions
=> Big challenge for SW TM because of high per-write overhead
=> Even HW TM needs sufficient bandwidth for versioning and commit




Transaction Nesting and I/O

m Nesting occurs only in java VM code
m 2.2 average depth
=> Limited support for nesting is sufficient for now

m |/O within transactions IS rare
m 27 applications have less than 0.1% of transactions with 1/O
m 8 applications have up to 1% of transactions with /O
s No transactions include both input and output
=> Buffered I/O would not deadlock




Speculative parallelization

m Speculatively parallelize loops in sequential algorithms
m E.g. each loop iteration becomes a transactions

m This study

m 6 loop based applications
m Mapped outermost loop iteration to single transaction

Outermost Iteration Start

Outermost Iteration End




Read-/Write-Set Size

m Bytes of data read/written by transaction
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The read-/write-sets get larger up to L2-sized buffers (~128K)
=> They doesn’t fit in L1 cache but still fits into L2-sized buffer

=> |nner loop parallelization might be better to reduce buffer requirement




Non-blocking
Synchronization

Take-away Points

Ohsenvation

Short-lived transactions

Light-weight TM primitives

Read-/write-sets < 16K

L1 cache for versioning

High write-set to length ratio

Per write overhead is critical
Challenge for STM

Few nested transactions

Limited nesting support

Few transactions with I/O

Buffered I/O

Speculative
Parallelism

Large read-/write-sets

L2 cache for versioning




Conclusion

m Extensive study of transactional behavior of programs
m 36 parallel applications from multiple domains
m Map existing parallel constructs to transactions

m Covered both non-blocking synchronization & speculative
parallelization

m Contributions
s Quantitative Observations on transactional characteristics
m Vost transactions are short-lived, small, and not nested
m Design Guidelines for Transactional Memory systems

Effective Guideline for TM Architects
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