
Building and Using the ATLAS Transactional Memory System

Njuguna Njoroge, Sewook Wee, Jared Casper, Justin Burdick, Yuriy Teslyar,
Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University

{njoroge, weese, jaredc, justy, yteslyar, kozyraki, kunle}@stanford.edu

1 Introduction

At WARFP 2005, we proposed ATLAS as a scalable
implementation for transactional parallel systems [5].
The impetus for the development of ATLAS is to ad-
dress the significant hurdles that software simulators
face in multiprocessor architectural research. In par-
ticular, ATLAS is an FPGA-based system that pri-
marily serves as a rapid software development plat-
form for our transactional memory model, TCC [4].
Leveraging commodity hardware and software tools,
ATLAS is poised to support research exploring the
impact of transactional memory on architecture, op-
erating systems, compilers and programming models.

To date, we have implemented a fully functional
2-processor ATLAS system on Xilinx’s XUP board
[8], employing the two embedded PowerPC cores in
the Virtex II Pro FPGA. To interface with the TCC
caches in the FPGA fabric, we have also implemented
the TCC API [3]. Additionally, we have developed in-
frastructure to support debugging and profiling with
the aim of increasing visibility and ease of performance
tuning of applications.

The objective of this abstract is to discuss our
experience in building ATLAS, evaluate its perfor-
mance and capabilities and discuss future enhance-
ments. Given the limited page count for this abstract,
we intend on covering more details in the presentation.
Also, we would like to demonstrate our system. In the
demo, we will present how to use the ATLAS system
to run an application from compilation to execution,
demonstrating some key features of our profiling and
debugging environment. The rest of the abstract is
structured in the following manner: Section 2 focuses
on the experience of building ATLAS. Then, in sec-
tion 3, we evaluate ATLAS using some applications
that run on TASSEL, TCC’s software simulator. Fi-
nally, in section 4, we will conclude by outlining future
work and direction for ATLAS.

2 Building ATLAS

At the inception of ATLAS, we decided to use com-
modity hardware (ML310 board) [5] and the accom-
panying software tool chain. By using a pre-packed
board and software, we were able to bypass the huge
up-front cost of designing a custom board and its cus-
tom software support infrastructure. After compar-
ing availability and price-points, we migrated to the
cheaper XUP board [8], which is about a tenth of
the cost of the ML310. The XUP board features the
same Virtex II Pro device (XC2VP30) with a higher
speed-grade than the ML310. The higher speed-grade
permits ATLAS to operate at a faster bus frequency
(from 85 MHz to 100 MHz, a 22% improvement). The
XUP board also has increased DDR memory capacity,
from 256 MB to 512 MB, and there are 3 SATA con-
nections for inter-board communication.

While we have no regrets in using a commodity
board, it has not come without significant challenges
in implementing the ATLAS hardware and API. In the
following two sections, we discuss the issues encoun-
tered, the workarounds, the techniques developed, in
implementing both ATLAS’s hardware and software
infrastructure.

2.1 ATLAS Hardware Infrastructure

As illustrated in Figure 1, ATLAS uses the two built-
in PowerPC (PPC) hard cores. Attached to each core
is a PLB (IBM’s Processor Local Bus) that connects
the data port of the PPC to the TCC cache. The
TCC caches have configurable cache capacity as ei-
ther 8, 16, or 32 kB with respective associativities
of direct-mapped, 2-way, or 4-way and a configurable
write-buffer of 2, 4, or 8 kB. The internal PPC data
cache is de-activated and bypassed to avoid interfer-
ence with TCC. Instruction fetches are sent directly to
the DDR controller. Since instruction fetches bypass
the TCC caches, we activate the internal 16-kB, 2-way
set-associative instruction-side caches in the PPC. For
transactional check-pointing storage, we use BRAM

1



Host PC

JTAG Serial (UART)

512MB
DDR SDRAM

Compact 
Flash

PowerPC 0

TCC
Cache

TCC
Cache

PLB Bus

Arbiter

Memory PLB BUS

OCM Bus OCM Bus

DDR Controller
XC2VP30 

FPGA Fabric

Instruction

Fetch

Instruction

Fetch

Checkpoint 
Memory

Custom 
TCC Logic

Standard 
Xilinx IP

Hard IP

Slave 
IPIF

Slave 
IPIF

PLB Bus

PowerPC 1

Checkpoint 
Memory

Figure 1: ATLAS Hardware Platform

(Xilinx on-chip SRAM cells) accessed through the On-
Chip Memory (OCM) bus that directly interfaces with
each PPC.

The first challenge encountered in building AT-
LAS’s hardware was familiarizing ourselves with the
board and its software tools. Although Xilinx EDK’s
capabilities and documentation are improving, it was
our experience that one has to invest a substantial
amount of time and effort in acclimating to the tool
chain. In particular, Xilinx tutorials, examples, docu-
mentation, and wizards did not support many of the
features we use. For example, it is always assumed
that only one of the two processors in the FPGA was
in use; there was very little support for using both
of them. When implementing the cache’s master PLB
interface, we used Xilinx’s IP Import Wizard to create
an IP Interface (IPIF) [7]. Unfortunately, there are
only two pages of waveforms in the manual on how to
create a master interface. In contrast, the same man-
ual contains 14 pages for the slave interface, which
were helpful when we designed the cache’s slave inter-
face. Due to this dearth in documentation, the master
interface took substantially more time to get working
than the slave interface. Consequently, the objective
of the IPIF pcore, to abstract away the complexity of
interfacing with the PLB bus, was unmet. This lack of
documentation for advanced features led to many un-
necessary build iterations while fighting with the tools,
during which the RTL and design were not changing
at all. The problem was compounded by an inflexible
and unoptimized build process that often performed

unnecessary time consuming steps. These extra de-
bug iterations substantionally increased design time
and will hopefully be eliminated as the tools improve.

Also, we learned that using Xilinx pcores (IP soft
cores) saves us design time, but the features and/or
performance are not always optimal for our design.
For instance, one challenge we encountered is main-
taining the design at a 100 MHz bus frequency. Be-
cause Xilinx’s PLB DDR controller does not function
properly below 100 MHz, we considered using Xil-
inx’s OPB (IBM’s On-Chip Peripheral Bus) DDR con-
troller, which allows you to clock the OPB bus at the
desired frequency and still operate the DDR memory
at 100 MHz. Unfortunately, this requires a PLB to
OPB bus bridge, and while straightforward to set-up,
a bridge would introduce a performance impact of an
additional 125 cycles of latency per access. Thus, we
chose to aggressively pipeline the TCC cache design
to meet 100 MHz timing with substantial amount of
effort.

Using a hard core processor also introduced a va-
riety of challenges. In particular, the lack of access
to the datapath introduced significant delays in cache
accesses. We chose to interface each PPC to its TCC
cache via a PLB bus and Xilinx IPIF pcore. Because
of this interface, it takes more than ten cycles for a
cache hit: 2 cycles from the PPC to the PLB arbiter,
3 cycles for PLB bus arbitration, 3 cycles in the PLB
IPIF pcore, and 2 more in the actual TCC cache. Had
we chosen to design our own soft processor core, the
TCC cache could have been nestled into the processor
RTL without incurring long latencies. Similarly, if we
did not use the PLB bus and IPIF and instead directly
connected the PPC to the TCC cache, we would also
have reduced cache hit latency. However, using a soft
core with a similar level of features as the PPC 405
(such as TLB and Memory Management Unit needed
to run an OS like Linux, debug features, etc.) would
have taken too much FPGA LUT real estate. Addi-
tionally, designing and maintaining a soft core pro-
cessor would substantially increase the project’s com-
plexity.

2.2 ATLAS Software Infrastructure

The ATLAS software infrastructure is designed to be
used as an architecture research tool and software de-
velopment environment. For architectural study, AT-
LAS provides as much profiling information as possi-
ble while minimizing the overhead to collect informa-
tion. It provides the parallelization factor, computa-
tion time, memory reference behavior, TCC overhead
(arbitration and commit time), violation and overflow
counts, overhead for an individual violation or over-
flow, and overall violation/overflow overhead. Hard-

2



Libraries (C/Asm.) Application (C)

Generate outputs 
on terminals.

Collect information
using ATLAS_XMD

Adapted from EDK 
package
by ATLAS

ATLAS
Standalone 
(Runtime)

ATLAS API Auxiliary
Libraries

Compiler
(powerpc-eabi-gcc 3.4.3)

& Linker

Benchmark

ATLAS

EDK package

User Application 
(TCC)

Linker Script

Executable
(*.elf)

Execution
(ATLAS_XMD)

Figure 2: ATLAS Software Platform

ware counters were used when feasible, but when a
hardware counter unnecessarily increased complexity
or when a hard core’s visibility limitations prevented
hardware profiling, software was used to collect the
data.

For software development, we feel easy debugging
capability is an important feature. XMD, Xilinx’s
hardware debugging tool that uses the JTAG inter-
face, has most of the capabilities that programmers
may need. We developed ATLAS XMD on top of that
to provide TCC specific debugging commands, such
as primitive TCC operations, some of the higher level
TCC API calls, and macros of commonly performed
tasks such as connecting to the FPGA and download-
ing executables. In addition to debugging support,
ATLAS provides the profiling information character-
ized in [2] to aid in performance optimization.

The Xilinx EDK allowed easy implementation of ba-
sic functionalities that are out of our research focus,
such as low level device drivers for I/O. Figure 2 shows
the ATLAS software infrastructure components and
design flow. However, to execute TCC applications,
the TCC API was developed for the PowerPC on the
FPGA and the Xilinx runtime system was modified.

The ATLAS API library is designed at the assem-
bly level because it needs to modify the machine sta-
tus manually to checkpoint and rollback. Because the
PPC has no external interface to the registers, all reg-
ister values had to be saved and restored sequentially.
In contrast, a custom soft processor could snapshot all
registers in a single clock cycle. The ATLAS API also

performs profiling information collection.
Even though Xilinx’s runtime system, standalone,

handles many details, we had to modify it to sup-
port multiprocessor and TCC specific issues. The
ATLAS runtime, ATLAS standalone, implements the
statically allocated private stack for each processor,
shared heap with malloc support, bss and sbss clear-
ance by only one processor, and low level synchro-
nization before platform initialization. These addi-
tions also required modification of the standard linker
script. Also, Xilinx’s standalone interrupt vector code
needed changing to handle TCC violation and over-
flow interrupts.

ATLAS uses mostly standard EDK libraries, but we
ported some optimized string and floating point oper-
ation libraries to improve performance, as described
in the next section.

3 Results and Evaluation

In this section, we present the results of 5 applica-
tions that were run on TASSEL and ATLAS, with
both 1 and 2 processor configurations on each plat-
form, as graphed in Figure 3. On average, 1-p ATLAS
is nearly 5 times faster than the 1-p TASSEL, and
2-p ATLAS is 8 times faster than 2-p TASSEL. Al-
though ATLAS is faster than the software simulator,
the speedup is lower than expected. Even though we
labored to improve the performance of ATLAS, sev-
eral bottlenecks persist because of the limitations of
hardcore IPs. The primary bottleneck is the lack of a
hardware FPU in the PPC core. Aggravating this defi-
ciency is the fact that most benchmarks evaluated are
floating point intensive scientific parallel applications.
Initially, we considered inserting a soft core FPU at-
tachment to the PPC, but we concluded that it would
offer marginal improvement in performance. In par-
ticular, the transfer of operands and results would in-
cur large latencies in traversing the PLB bus (Section
2.1). Moreover, two soft core FPUs would consume
too many LUTs with the current 80% LUT utiliza-
tion. As an alternative, we adopted a hand-optimized
assembly-level library [6], which offered an average of
5 times speedup. To see how ATLAS performs on in-
teger applications, we evaluated the integer portion of
radix (where the actual sorting takes place), and we
measured a speedup factor of 75 (2-p ATLAS versus
2-p TASSEL). Note that radix should be considered as
a floating point intensive application, since it spends
more than 90 percent of its execution time generating
random numbers to sort using floating point opera-
tions.

3



0

5

10

15

20

25

Swim Radix Tomcatv Ocean Mp3d Average
Applications

Sp
ee

du
p

ATLAS1P

ATLAS2P
TASSEL

1

Figure 3: 1-p and 2-p ATLAS Speedups versus TAS-
SEL

4 Conclusions

Having a 2-way ATLAS system running is the first
step in scaling-up to a 16-32 processor ATLAS sys-
tem. We are currently implementing an interconnec-
tion network that will be the basis for a ring topology
of XUP boards. We have chosen this topology because
an XUP board can only connect point to point with 2
other boards. We envision minimal changes to the ac-
tual TCC caches and API to support the multiboard
configuration. Additionally, we will port Linux and
start exploring the behavior of transactional applica-
tions with it.

In implementing ATLAS, we can see that FPGAs
are promising platforms for conducting multiproces-
sor system research. However, it is apparent that the
current state of boards and tools need substantial im-
provement. In essence, the tool infrastructure needs
to evolve to a comparable maturity level that soft-
ware simulators have attained over the last decade
in order for FPGA-based research to gain traction.
In particular, small-scale multiprocessor research typ-
ically employs 8-16 processors, whereas most FPGAs
support at most 2 hard-core processors (or at most
one soft-core of similar sophistication), necessitating
an array of FPGAs for the research. With today’s
commodity boards, such projects require one to build
a network of boards, which introduces more obsta-
cles, thus increasing the implementation complexity.
The RAMP project [1], currently under development,
is proactively addressing these concerns. Given its
promising potential, we plan to migrate ATLAS to
this platform when it becomes readily available.

5 Acknowledgements

This research was sponsored by the Defense Advanced
Research Projects Agency (DARPA) through the De-
partment of the Interior National Business Center un-
der grant NBCH104009. The views and conclusions
contained in this document are those of the authors
and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the De-
fense Advanced Research Projects Agency (DARPA)
or the U.S. Government.

Additional support was also provided by the Sam-
sung Lee Kun Hee Scholarship Foundation and the
Stanford School of Engineering.

References

[1] Arvind, K. Asanović, D. Chiou, J. C. Hoe,
C. Kozyrakis, S.-L. Lu, M. Oskin, D. Patterson,
J. Rabaey, and J. Wawrzynek. RAMP: Research ac-
celerator for multiple processors - a community vision
for a shared experimental parallel HW/SW platform.
Technical report, 2005.

[2] H. Chafi, C. Cao Minh, A. McDonald, B. D. Carlstrom,
J. Chung, L. Hammond, C. Kozyrakis, and K. Oluko-
tun. TAPE: A transactional application profiling envi-
ronment. In ICS ’05: Proceedings of the 19th annual in-
ternational conference on Supercomputing, pages 199–
208. June 2005.

[3] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg,
M. Chen, C. Kozyrakis, and K. Olukotun. Program-
ming with transactional coherence and consistency
(TCC). In ASPLOS-XI: Proceedings of the 11th inter-
national conference on Architectural support for pro-
gramming languages and operating systems, pages 1–
13. ACM Press, Oct 2004.

[4] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional mem-
ory coherence and consistency. In Proceedings of the
31st International Symposium on Computer Architec-
ture, pages 102–113, June 2004.

[5] C. Kozyrakis and K. Olukotun. Atlas: A scalable em-
ulator for transactional parallel system. In Workshop
on Architecture Research using FPGA Platforms, 11th
International Symposium on High-Performance Com-
puter Architectur. Feb 2005.

[6] N. Leeder. Powerpc performance libraries. Sourceforge
website:
http://sourceforge.net/projects/ppcperflib.

[7] Xilinx. PLB IPIF. PLB IPIF data sheet:
http://www.xilinx.com/bvdocs/ipcenter/data sheet/plb ipif.pdf.

[8] Xilinx. Xilinx XUP virtex II pro development system.
XUP Website: http://www.xilinx.com/univ/xupv2p.html.

4


