
ATLAS: A Scalable Emulator for Transactional Parallel Systems

Christos Kozyrakis and Kunle Olukotun
Computer Systems Laboratory

Stanford University
http://tcc.stanford.edu

With uniprocessor systems running into instruction-level par-
allelism (ILP) limits and fundamental VLSI constraints, multi-
processor architectures provide a realistic path towards scalable
performance. Nevertheless, the key factors limiting the potential
of multiprocessor systems are the difficulty of parallel application
development and the hardware complexity of large-scale systems.
Several groups have recently proposed parallel software and
hardware based on the concept of transactions as a novel ap-
proach for addressing the problems of multiprocessor systems [1-
6]. Transactions have the potential to simplify parallel program-
ming by eliminating the need for manual orchestration of parallel
tasks using locks and messages [5]. Transactions have the poten-
tial to improve parallel hardware by allowing for speculative par-
allelism and increasing the granularity of the coherence and con-
sistency protocols [4].

To realize the potential of transactional systems, researchers
must address challenges that span across the fields of architecture,
programming models, compilers, and operating systems. It is
particularly important to prove that transactional software and
hardware work well with large enterprise, scientific, and cognitive
workloads, which rely on the performance potential of multiproc-
essor chips. While architectural studies of small-scale systems
with reduced datasets are certainly possible through simulation,
slowdowns of 5 orders of magnitude are typical when simulating
large-scale parallel systems with large enterprise or scientific
applications and modern operating systems [7]. The prohibitive
slowdowns deter aggressive experiments and discourage the soft-
ware community from participating in the development of new
hardware and software models for large-scale parallel systems.

This talk will introduce ATLAS, a scalable emulator for trans-
actional parallel systems under development at Stanford. The goal
of ATLAS is to provide a fast emulation system for detailed ar-
chitecture studies while supporting a broad set of software tools to
serve as the base for programming model, compiler, and OS re-
search. ATLAS is based on commodity FPGA boards with Xilinx
Virtex II Pro devices. The current setup (ML310 boards with
2VP30 chips) allows for 2 PowerPC 405 cores, 300 Kbytes of
dual-ported SRAM, 30K logic cells, and 8 3Gbps RocketIO trans-
ceivers per chip. Each board includes 256 Mbytes of SDRAM,
512 Mbytes of Compact Flash, a 10/100 Ethernet NIC, and IDE
connections for hard disks.

ATLAS uses the PowerPC cores in the FPGA chips as the
processors for the emulated parallel system. The dual-ported
SRAMs and reconfigurable logic are used to construct the mem-
ory hierarchy with transactional execution support (speculative
state buffers, violation detection and rollback logic etc.) [4].
Small-scale parallel systems with up to 8 boards (16 processors)
are created using point-to-point connections through the RocketIO
transceivers (full-connectivity). Larger systems require the use of
additional boards or on-chip resources to implement a scalable
interconnect network. Depending on the network configuration,
ATLAS supports per processor network bandwidth of 4 to 30
bytes per cycle, which has been shown to be sufficient for trans-
actional parallel systems [4].

The software environment for ATLAS relies on the rich soft-
ware base for the ML310 board, which runs Linux out of the box
[ref]. This allows us to incorporate several key open-source pack-
ages in our research infrastructure: Linux for OS research, gcc for
C-based programming model and compiler optimizations, Jikes
RVM for Java-based programming model and dynamic optimiza-
tions, Jboss, apache, and Berkeley DB for enterprise application
studies. It is particularly important that the current sequential
version of these applications run on ATLAS without porting. We
can immediately investigate full-system issues and gradually port
or adapt portions of these tools to the transaction-based environ-
ment as needed.

The main advantages of ATLAS are emulation speed, high
modeling accuracy, and software flexibility. It allows fast emula-
tion of transactional hardware with tens of processors at frequen-
cies ranging from 10s to 100s of MHz, which is only one order of
magnitude slower than an ASIC-based prototype. The emulation
results can be highly accurate as ATLAS is based on real hard-
ware (hard core for the processor, synthesized logic for the mem-
ory hierarchy). Moreover, ATLAS provides its hardware and
software flexibility without significant up-front chip, board, or
software design. The main shortcoming of ATLAS is its fixed and
simple processor core. We believe that this is not a significant
roadblock for future research. The processor microarchitecture is
less critical than the memory hierarchy and interconnect in a par-
allel system. ATLAS trades off processor model complexity for
emulation speed and for software flexibility, which are crucial for
reaching our research goals.

We are currently developing the first version of the ATLAS
emulator for the TCC transactional architecture [4-5]. Our goal is
to build a system with at least 32 to 64 boards (64-128 proces-
sors), with each processor operating at 100MHz (based on current
technology). The development includes emulator assembly, hard-
ware synthesis, and transactional software development (pro-
gramming models, API, compiler, applications). Given the com-
modity and low-cost nature of the ATLAS building block
(ML310), we also intend to make the ATLAS design files and
software available to the wider research community in order to
disseminate the ideas and enable further research on transaction-
based parallel hardware and software.

References
[1] M. Herlihy and J. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” in ISCA-20, 1993.
[2] R. Rajwar and J. Goodman, “Transactional Lock-Free Execution
of Lock-Based Programs,” in ASPLOS-X, 2002.
[3]T. Harris and K. Fraser, “Language Support for Lightweight
Transactions,” in OOPSLA, 2003.
[4]L. Hammond, et.al. “Transactional Memory Coherence and Consis-
tency,” in ISCA-31, 2004.
[5]L. Hammond, et.al. “Programming with Transactional Memory Coher-
ence and Consistency,” in ASPLOS-XI, 2004.
[6] S. Ananian, et.al. “Unbounded Transactional Memory”, in HPCA-11,
2005.
[7] A. Alameldeen, et.al. “Simulating a $2M commercial server on a $2K
PC”, IEEE Computer, 2003.

