
A Practical FPGA-based Framework for Novel CMP
Research

Sewook Wee, Jared Casper, Njuguna Njoroge, Yuriy Tesylar, Daxia Ge
Christos Kozyrakis and Kunle Olukotun

Computer System Laboratory
Stanford University

353 Serra Mall
Stanford, California 94305

tcc fpga xtreme@lists.stanford.edu

ABSTRACT
Chip-multiprocessors are quickly gaining momentum in all
segments of computing. However, the practical success of
CMPs strongly depends on addressing the difficulty of mul-
tithreaded application development. To address this chal-
lenge, it is necessary to co-develop new CMP architecture
with novel programming models. Currently, architecture
research relies on software simulators which are too slow to
facilitate interesting experiments with CMP software with-
out using small datasets or significantly reducing the level
of detail in the simulated models.

An alternative to simulation is to exploit the rich capa-
bilities of modern FPGAs to create FPGA-based platforms
for novel CMP research. This paper presents ATLAS, the
first prototype for CMPs with hardware support for Trans-
actional Memory (TM), a technology aiming to simplify
parallel programming. ATLAS uses the BEE2 multi-FPGA
board to provide a system with 8 PowerPC cores that run at
100MHz and runs Linux. ATLAS provides significant ben-
efits for CMP research such as 100x performance improve-
ment over a software simulator and good visibility that helps
with software tuning and architectural improvements. In
addition to presenting and evaluating ATLAS, we share our
observations about building a FPGA-based framework for
CMP research. Specifically, we address issues such as overall
performance, challenges of mapping ASIC-style CMP RTL
on to FPGAs, software support, the selection criteria for the
base processor, and the challenges of using pre-designed IP
libraries.

Categories and Subject Descriptors: C.4 [Performance
of System]: Modeling Techniques

General Terms: Design, Experimentation, Performance

Keywords: Chip Multi-processor, Transactional Memory,
FPGA-based emulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’07, February 18–20, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-600-4/07/0002 ...$5.00.

1. INTRODUCTION
Processor vendors are turning en masse towards chip-

multiprocessors (CMPs) as a practical way to turn increas-
ing transistor budgets into scalable performance. Neverthe-
less, the practical success of CMP-based systems is limited
by the difficulty of parallel programming [1]. While in some
systems we can utilize CMP cores by running many pro-
grams concurrently, parallel programming is necessary in
order to reduce the execution time of one program. Existing
models for multithreaded programming using locks are chal-
lenging for most programmers as they introduce a trade-off
between performance and correctness. The use of coarse-
grain locks makes it easy to write a correct parallel program
but it limits concurrency. The use of fine-grain locks reveals
additional concurrency but often leads to races, deadlocks,
livelocks and other difficult bugs [2].

Transactional Memory (TM) [3] has been proposed as a
promising technology that can simplify concurrency man-
agement. TM allows programmers to define coarse-grain
parallel tasks (transactions) that will be executed atomi-
cally and in isolation. Using optimistic concurrency, TM
executes these tasks in parallel on a CMP, providing per-
formance similar to that of fine-grain locks. Recently, there
has been significant research on efficient software and hard-
ware TM implementations from both academia and indus-
try [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Hardware support for
TM (HTM) is considered necessary in order to eliminate the
overheads of managing concurrent execution of transactions
and to allow TM programs to use existing software libraries
without the need for recompilation.

To develop a technology like TM, collaborative research
on both hardware and software aspects is necessary. Un-
fortunately, software researchers are waiting for real hard-
ware with fast TM support before they develop and eval-
uate a significant volume of TM-based software. Similarly,
hardware researchers cannot justify the introduction of new
architectures before sufficient software is available. More-
over, it is difficult to optimize new hardware designs with-
out feedback from their software evaluations. To date, soft-
ware simulation has been the primary tool to allow collab-
orative hardware and software research. However, simu-
lation is not a practical environment for parallel software
development which typically involves large programs and
datasets, for which debugging and performance tuning on
a simulator is too slow. Experimental chip prototypes can
be used to speedup TM software research, but due to their

fixed nature, they cannot help with the exploration of hard-
ware alternatives. Additionally, prototype chips take long
to develop, hence they cannot help with collaborative hard-
ware/software research in the early stages of a project.

Conveniently, FPGA systems are now a viable platform
for CMP research, both hardware and software. Today’s
FPGAs integrate one or more processor cores, multi-ported
SRAM blocks, and rich I/O interfaces within a dense fabric
of hundreds of thousands of reconfigurable logic cells. Given
the availability of multi-FPGA boards and the wide variety
of pre-designed IP cores, it is possible to prototype novel
CMP architectures in a full-system environment. Such pro-
totypes allow for innovative hardware research, where de-
signers can “tape out” an improved version of the system
on a daily basis. Additionally, FPGA-based CMP proto-
types can be fast enough (50 to 200MHz) to allow software
research at speeds that are orders of magnitude faster than
simulation. Overall, the advantages of FPGAs for CMP re-
search has attracted significant attention and has lead to
initiatives such as RAMP [15].

In this paper, we present the architecture and design ex-
periences from ATLAS, the first FPGA-based framework for
research on CMPs with hardware support for transactional
memory. ATLAS is also the first operational design from
the RAMP initiative. ATLAS uses the BEE2 multi-FPGA
board [16] to provide a full system with 8 PowerPC cores
and a memory hierarchy with TM support. The system runs
Linux and exhibits good performance efficiency on a range
of parallel applications. ATLAS’ primary goal is to pro-
vide an excellent framework for research on TM software.
Despite running at 100MHz, it is 100 times faster than a
simulator running on high-end workstations. Hence, it can
significantly shorten the application development and eval-
uation cycle, even when large datasets are used. Moreover,
ATLAS provides extensive support for performance moni-
toring and tuning which helps software developers identify
performance bottlenecks and generates detailed insights for
hardware researchers.

In addition to presenting and evaluating ATLAS, this pa-
per presents our observations and insights on using FPGA
systems to create flexible frameworks for CMP research.
The specific lessons from ATLAS are:

• Lesson 1 Despite the lower clock frequency as com-
pared to modern workstations, FPGA-based CMP en-
vironments can outperform software simulators by two
orders of magnitude.

• Lesson 2 The major challenges when mapping ASIC-
style RTL for a CMP system on an FPGA are highly
associative memory structures, large lower-level caches,
and interconnect fabrics that span across FPGAs.

• Lesson 3 For projects with a heavy focus on software
research, it is important to select a base processor core
with rich software support and features. Other crite-
ria, such as flexibility and size, are secondary.

• Lesson 4 The use of IP core libraries is crucial to
shortening the system development time. However,
there is a need for cores with improved interfaces for
debugging and performance profiling purposes.

The rest of the paper is organized as follows. Section 2
overviews TM and related work. Section 3 presents the AT-

LAS hardware and software architecture. Section 4 quanti-
tatively compares ATLAS with a software simulator model-
ing the same target architecture. Section 5 summarizes the
major lessons from the ATLAS development and Section 6
concludes the paper.

2. BACKGROUND

2.1 TM at a glance
To parallelize an application, a programmer must break

the code up into multiple threads that can execute in par-
allel. The programmer must also synchronize the threads
when they potentially operate on the same data in mem-
ory. The conventional synchronization approach is to use
locks. If the system supports transactional memory, the
programmer can synchronize threads simply by wrapping all
the code that operates on the potentially shared data into
a transaction. Transactions are guaranteed by the system
to appear to execute atomically and isolated, even if mul-
tiple transactions are executed concurrently. TM systems
achieve high performance through optimistic concurrency.
A transaction runs without acquiring locks, optimistically
assuming no other transaction operates concurrently on the
same data. If this is true at the end of its execution, the
transaction commits its writes to shared memory. If not,
the transaction violates, its writes are rolled back, and it is
re-executed.

A TM system must implement the following mechanisms:
(1) isolation of stores until the transaction commits; (2) con-
flict detection between concurrent transactions; (3) atomic
commit of stores to shared memory; (4) rollback of stores
when conflicts are detected. Conflict detection requires track-
ing the addresses read (read-set) and written (write-set) by
each transaction. A conflict occurs when the write-set of
one transaction intersects with the read-set of another con-
currently executing transaction. These mechanisms can be
implemented either with hardware support (HTM) [4, 5, 6,
7] or in a software only manner (STM) [8, 9, 10, 11, 12,
13, 14]. HTM systems support transactional mechanisms
at minimal overheads and make the implementation details
transparent to software.

HTM systems implement speculative buffering and track
read- and write-sets in caches [4]. The data caches in CMP
cores are large enough to buffer the state for the trans-
actions in most applications [17] and simple virtualization
techniques can handle the rare case of a cache overflow [6,
18]. For conflict detection, a HTM system can utilize the
cache coherence protocol. As messages are exchanged be-
tween cores to locate data on cache misses, it is possible to
detect the overlap between a read-set and a write-set that
triggers a conflict. Simulation studies have shown that such
hardware TM implementations can allow multithreaded pro-
grams to synchronize in a high performance manner using
fairly simple, coarse-grain, transactions in their code [19].

2.2 Related Research
FPGA-based emulation platforms for parallel systems date

to the RPM project [20]. Given the shift towards CMPs and
the increasing FPGA densities, there is renewed interest for
such systems. FAST [21] is an FPGA-based framework for
modeling CMPs with MIPS cores. While it is a suitable
framework for CMP memory system research, it lacks sup-
port for significant software development. The RAMP[15]

ProcessorRegister
Checkpoint

V SR
(7:0)

SM
(7:0)

TAG DATA
(8 words)

TCC
Cache

Write-set
Address

FIFO

Load/Store
Address

Snoop
Control

Refill
Control

Overflow
Control

Commit
Control

Load/Store
Data Commit

Commit
Data

Commit
Address

Trigger

Overflow

Commit Bus

Refill Bus

Commit
Address In

Commit
Data In

Refill
Data In

Commit
Address Out

Commit
Data Out

Violation

Figure 1: The data cache organization for ATLAS.

project strives to develop a general framework for FPGA-
based hardware and software CMP research and currently
uses the BEE2 board [16].

There are also efforts to use FPGAs to accelerate sim-
ulation systems. The idea is to move the time-consuming
detailed modeling of hardware structures into the FPGA,
while functional modeling is still simulated [22, 23, 24]. Even
though this provides a faster simulator, it sits far from a
full system prototype. Hong et al. have used FPGAs in a
working system to quickly simulate various configurations
for lower level caches [25]. Finally, there are efforts to
map large out-of-order processors to FPGAs as a prototyp-
ing medium [26].

3. THE ATLAS CMP SYSTEM
ATLAS is the first full-system framework for a CMP with

transactional memory support. This section presents its ba-
sic architecture, the hardware design, and its software envi-
ronment. The prototype is currently operational at 100MHz,
runs the GNU/Linux operating system, and runs multi-
threaded applications that use transactional memory.

3.1 The TCC TM Architecture
ATLAS prototypes the Transactional Coherence and Con-

sistency (TCC) architecture for hardware-based transactional
memory [19]. TCC assumes a set of processor cores with pri-
vate first-level caches that are connected through a snoop-
ing bus to the shared memory (shared caches and DRAM).
The cores execute transactions speculatively, while track-
ing the read- and write-sets in the data cache organization
shown in Figure 1. As a core performs loads and stores
within a transaction, it sets the speculatively-read (SR) and
speculatively-modified (SM) bits to indicate that the corre-
sponding word is now part of the transaction’s read-set or
write-set, respectively. Also, the first time a word is writ-
ten in a specific cache line, the cache pushes a pointer to
it into the write-set address FIFO. The cache operates as a
write-buffer, isolating all writes from shared memory until
the transaction completes.

At the end of the transaction, the core arbitrates for per-

Figure 2: The BEE2 multi-FPGA board used to pro-
totype ATLAS.

mission to commit the write-set to the shared memory. While
the system executes multiple transactions in parallel, only
one is allowed to commit at any point in time. Once granted
the commit token, the core uses the write-set address FIFO
to traverse the cache and commit the transaction’s writes.
To detect conflicts, all other cores snoop the commit mes-
sages, searching their data caches for the committed ad-
dresses. If a word currently committed belongs to the read-
set of another transaction (SR bit is set), a violation is
triggered for the snooping transaction. When a transac-
tion violates, the cache undoes its effect by invalidating its
write-set from the cache (lines with SM bits set). Regis-
ter checkpointing at the boundaries of transactions is also
necessary to undo register updates. Because there is only
one transaction committing, the committing transaction is
always guaranteed to complete. Before the commit is over,
the processor clears the SR and SM bits in the cache.

An interesting feature of TCC is that communication be-
tween cores occurs only at transaction boundaries. This
point is the only place where the caches are kept coher-
ent and access ordering is enforced. TCC uses this simple
commit mechanism to replace the complex cache coherence
protocols like MESI. This feature is possible because well
synchronized programs should access truly shared data only
within user-defined transactions. To handle legacy codes
with benign races, TCC uses periodic commits outside of
transactions to keep caches coherent.

A user-defined transaction may be large enough to over-
flow the data cache. In this case, the core arbitrates im-
mediately for the commit token, performs a partial commit,
and does not release the token until it reaches the real end
of the transaction. Such overflow events slowdown commits
but are rare in tuned programs. In Section 3.3, we discuss
how ATLAS provides explicit support to help programmers
identify and quickly eliminate overflows and other bottle-
necks in their parallel code.

3.2 The ATLAS Hardware Design
ATLAS implements the TCC architecture for CMPs with

transactional memory support. ATLAS includes 8 PowerPC
405 cores that run multithreaded code for applications and
a ninth core that handles the operating system and I/O
devices. The design has been mapped onto the BEE2 multi-
FPGA board shown in Figure 2 [16]. ATLAS is also part

Control FPGA

DDR2
DRAM

Controller

Commit
Token
Arbiter

Linux
PPC

I/O
(disk, net)

User FPGA

TCC$I $

TCC
PPC

TCC$I $

TCC
PPC

User FPGA

TCC$I $

TCC
PPC

TCC$I $

TCC
PPC

User FPGA

TCC$I $

TCC
PPC

TCC$I $

TCC
PPC

User FPGA

TCC$I $

TCC
PPC

TCC$I $

TCC
PPC

User Switch
Control Switch

User Switch

User Switch

User Switch

Figure 3: Block diagram of the ATLAS system.

of the RAMP project that aims at developing FPGA-based
technology for prototyping modern CMP systems [15].

Figure 3 illustrates how ATLAS is mapped to the BEE2
board. The four outer FPGAs, labeled as User FPGAs, are
connected in a star topology through the 5th FPGA, desig-
nated as the Control FPGA. Figure 4(a) shows the block dia-
gram of the User FPGA. Each FPGA includes two PowerPC
405 cores enhanced with a TCC data cache (TCC PPCs).
We use the hardcore PowerPC cores in the Virtex II-Pro
FPGAs. The data cache design, written in synthesizable
Verilog, is attached to the PowerPC cores through the IBM
Processor Local Bus (PLB). The cache has 32 byte lines
and can be 1, 2, or 4-way set associative (each way is 8 KB,
resulting in cache sizes of 8, 16, or 32 KB). The write-set
address FIFO can be configured to be 0.5, 1, 2, 4 or 8 KB.
The internal data cache in the PowerPC cores is disabled.
The TCC cache is in turn connected to a network switch
(shared by two cores) that forwards cache misses and com-
mit requests to the control FPGA through a central switch.
For instructions, we use the built-in instruction cache in
each PowerPC core. Like the TCC caches, the local switch
forwards the cache refill requests to the Control FPGA. As
we run Linux on ATLAS, each core activates the built-in
TLB (unified, fully-associative, 64 entries). We also connect
two SRAM blocks to the processor through the On-Chip
Memory (OCM) bus. The first SRAM (Checkpoint BRAM)
serves for register checkpointing (in software), while the sec-
ond SRAM (Communication BRAM) serves to coordinate
system calls and exceptions for Linux (refer to Section 3.3).
The two SRAMs are implemented on the FPGA using the
on-chip block SRAM (BRAM) blocks available.

The Control FPGA is a hub that connects all processors
to the shared memory and I/O devices. The current design
does not use secondary caches, though this is not fundamen-
tal. As depicted in Figure 4(b), the Control Switch inter-
faces with the commit token arbiter, the DDR controller and
the PowerPC 405 core that runs Linux (Linux PPC). The
Linux PPC uses its built-in caches but its memory writes
are broadcast to all other processors for coherence purposes.
All traffic sent through switches is packetized with a single
packet format to simplify routing around the system.

Another function of the Control FPGA is to provide I/O
capabilities. A number of I/O peripherals are connected
to Linux PPC, including an Ethernet controller, a UART
controller, a SelectMap controller for programming the user
FPGAs through a Linux device driver, and a SystemACE
controller that interfaces to a CompactFlash card. Using

TCC $

I $ D $ *

PowerPC 405
(TCC PPC)

ITLB

PLB

PLB

DSOCM

Comm.
BRAM

Checkpoint
BRAM

DSOCM

Comm.
BRAM

Checkpoint
BRAM

P
LB

P
LB

I $D $ *

User Switch

TCC $

ITLB

PowerPC 405
(TCC PPC)

DTLB DTLB

* internal D$
is disabled

(a) User FPGA

I $ D $

PowerPC 405
(Linux PPC)

ITLB

PLB

DSOCM

DTLB

OPB

Control Switch

SystemAce
ControllerUARTSelectMap

Controller

PLB/OPB
Bridge

Comm.
BRAM

Commit
Token
Arbiter

DDR2
DRAM

Controller

Ethernet
Controller

(b) Control FPGA

Figure 4: Block diagram of the User (a) and Control
(b) FPGAs.

Network File System (NFS), ATLAS can access external
storage over the Ethernet.

3.3 The ATLAS Software Design
The ATLAS software stack consists of an API for pro-

gramming with transactions and the system software.
For application programming, the user partitions work

into parallel threads and defines atomic transactions within
each thread. As explained in [27], this approach allows
for both non-blocking coarse-grain synchronization of par-
allel code and speculative parallelization of sequential code.
We currently provide an API for C-based transactional pro-
gramming, which permits users to define transaction bound-
aries. The application is compiled with a regular C compiler
(gcc in our case) and linked with the ATLAS library that
provides optimized assembly-based implementations of the
API calls. At the start of a transaction, the API call check-
points the processor’s register file, clears SM and SR bits
in the data cache, and registers the transaction with the
commit token arbiter. When the transaction completes, the
API call first requests the commit token and, when granted,
triggers the commit of the write-set to shared memory.

The ATLAS system software is summarized in Figure 5.
ATLAS runs Linux only on the Linux PPC. The eight TCC
PPCs in the user FPGAs run a simple runtime kernel that
coordinates with Linux. This approach is similar to the
Intel MISP concept for efficient CMPs [28]. A user applica-
tion starts on the Linux PPC as a regular user application
under Linux. On the first call to the ATLAS library, the
context of the application (private stack pointer, program
counter, and process information) is transferred to the pri-
mary TCC PPC (core number 0). The primary TCC PPC
executes the application and invokes the other 7 processors
as needed on parallel regions in the program. The runtime

Transfers
initial context

TCC PPCs Request OS support.
(TLB miss, system call)

Exits with
application stats

Linux PPC regenerates, service,
and reply back the request.

Joins
parallel work

Invokes
parallel work

Linux
PPC

TCC
PPC 0

TCC
PPC 2

TCC
PPC 7

TCC
PPC 1

Figure 5: Overview of the ATLAS system software.

kernel also contains a transaction rollback handler triggered
when a data cache detects a violation for the currently exe-
cuting transaction. The handler invalidates the write-set in
the data cache, restores the register checkpoint, and restarts
the transaction.

During the program execution, the Linux PPC core han-
dles all interrupts due to external devices. It also handles
any OS functions needed to support the execution on the
TCC PPCs, like system calls or exceptions such as a TLB
miss. For example, on a TLB exception, the TCC PPC
sends the faulting address to the Linux PPC. The Linux
PPC regenerates the exception, runs the corresponding OS
code to resolve it (e.g. access the page table for the proper
translation entry), and sends the information back to the
requesting TCC PPC. We handle other exceptions and sys-
tem calls in a similar manner (I/O, memory allocation etc.).
Hence, the user code can run assuming full OS support at
any point of the program. At the current scale of the AT-
LAS system, a single core running the OS is sufficient to
serve eight cores running application code. Using a single
core for the OS allows us to run conventional Linux with-
out special consideration for concurrency in the OS code.
In larger scale configurations of ATLAS, the number of OS
cores may need to be scaled. In this case, we will have to
port SMP Linux onto ATLAS. We will also have the oppor-
tunity to explore the use of transactional synchronization in
system code.

An important part of the ATLAS system is the support
for performance tuning of user applications. Transactional
memory makes it easy to write a correct parallel program.
Nevertheless, a program may still include performance bot-
tlenecks such as frequent transaction violations or expensive
overflows [27]. To help the user identify the most signifi-
cant bottlenecks, ATLAS includes a profiler framework that
utilizes performance counters built into the PowerPC cores
and additional counters and filters introduced in the TCC
cache [29]. The hardware tracks the occurrence of all vi-
olations and overflows, the corresponding instruction and
data references that triggered them, and an approximation
of their cost. The profiler software uses this information
to identify the most important problems and pinpoint the
offending variables or lines in the user source code. The ac-
curate feedback on performance bottlenecks allows ATLAS
users to quickly tune their applications as they can focus on
the important issues and avoid the need to understand the
whole application in detail.

CPUs 8 PowerPC 405 cores (TCC) at 100 Hz
1 PowerPC 405 core (Linux) at 300 MHz
16 KB 2-way I-cache (9 cores)
32 KB 4-way TCC D-cache (8 cores)
16 KB 2-way PowerPC internal D-cache
(1 core)

Main Memory 512 MB DDR2 at 200 MHz
I/O 10/100 Mbps Ethernet, RS232 UART, 512

MB Compact Flash

OS Montavista 3.1 (Linux kernel ver. 2.4.30)

EDA Tools Xilinx EDK 7.1i
User FPGA Xilinx XC2VP70, 17,641 LUTs (26%), 212

KB BRAMs (32%)
Ctrl FPGA Xilinx XC2VP70, 16,284 LUTs (24%), 66

KB BRAMs (10%)

Table 1: ATLAS design statistics.

4. EVALUATION
Table 1 presents the default configuration of the ATLAS

design and its resource utilization. The design is currently
operational at 100MHz and runs Linux.

4.1 Methodology
To evaluate ATLAS, we ran five applications on both AT-

LAS and TASSEL, an established software simulator for the
TCC architecture. The applications include three scientific
benchmarks (radix, mp3d, ocean); a hashtable microbench-
mark that performs random insert, remove, and lookup op-
erations on a hashtable; and vacation, a benchmark that
emulates a travel reservation management and database sys-
tem. All applications include multiple threads that operate
on data in shared memory in an irregular manner. We use
the following evaluation metrics:

• Wall Clock Time: We observe how much faster AT-
LAS executes each application compared to TASSEL
by wall clock time (as seen by the user).

• Speedup: We examine the estimated architectural
speedup of each application normalized to the unipro-
cessor execution time in each system. We compare
the TASSEL and ATLAS speedup to verify that the
FPGA design constraints do not affect the accuracy of
execution results.

• Execution Time Breakdown: To fully understand
the speedup trends, we measure and compare the exe-
cution time breakdown for each system. The execution
time is divided into the following components: “Use-
ful” time, stall cycles due to cache misses, time spent
committing transactions, idle cycles due to thread im-
balance (synchronization), and cycles lost due to vio-
lations. Such breakdowns are important for both veri-
fication purposes and to provide programmers and ar-
chitects with further profiling information.

4.2 Comparing ATLAS against TASSEL
TASSEL is a PowerPC-based execution-driven simulator

of TCC that runs on workstations with PowerPC G5 pro-
cessors (2 GHz). TASSEL is coded in C++ and uses fast
forwarding to avoid time-consuming simulation for the ini-
tialization code of each benchmark. During fast forwarding,

1

10

100

1000

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

radix vacation mp3d hashtable ocean

Applications

S
p
e
e
d
u
p

Total

Profiled

Figure 6: Speed up of the wall clock time to run
the application on ATLAS vs. TASSEL. Total is the
total time used by the process in Linux and Pro-
filed is the user-specified interesting section of the
application. Note the logarithmic scale on the axes.

TASSEL uses direct execution on the G5 system. This fea-
ture reduces simulation time significantly. Since TASSEL is
a fully-flexible simulator, the modeled hardware is not lim-
ited to the capabilities of FPGAs. Hence, there are some
implementational features that ATLAS and TASSEL model
differently. For instance, TASSEL assumes gang clears of the
speculative state bits in the cache, while ATLAS has to clear
each cacheline’s speculative bits one cycle at a time. TAS-
SEL assumes single-cycle L1 cache hits, while ATLAS takes
13 cycles to access the TCC cache from the PowerPC core.
TASSEL’s interconnection network is a bus-based model,
whereas ATLAS is a hierarchical topology constrained by
the inter-FPGA connectivity on the BEE2 board. In some
cases, ATLAS provides more features than TASSEL. Most
significantly, ATLAS applications run on top of Linux, so
ATLAS uses virtual memory and TLBs. Naturally, this im-
plies that ATLAS application runs include the time for TLB
miss handling and page faults.

It is important to note that TASSEL is not fully cycle-
accurate, hence we expect some variance when compared to
the behavior of any real TCC implementation. Similarly,
we do not claim that ATLAS is a cycle-accurate emulator
of an ASIC TCC prototype since some FPGA constraints
introduce additional latencies (longer L1 hit-time, multi-
cycle gang-operations and so forth). However, we do claim
that ATLAS is sufficiently accurate for software research
on transactional memory, our primary target for the sys-
tem. Specifically, software researchers are much more con-
cerned with parallel efficiency and speedup rather than the
precision of cycle counts. Moreover, these researchers are
interested in the relative cost of various performance bottle-
necks such as violations or cache misses as they determine
the focus of performance tuning efforts. Hence, our evalua-
tion focuses on comparing the speedups and execution time
breakdowns reported by TASSEL and ATLAS. By compar-
ing results from these two independent approximations of
a real TCC system, the TCC architecture itself is further
validated and the merits of transactional memory are ex-
posed. Also note that the insights generated by software
research are the basis for further research on improving the
TCC hardware architecture.

0

2

4

6

8

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

radix vacation mp3d hashtable ocean

Applications

S
p
e
e
d
u
p

ATLAS TASSEL

Figure 7: Speed up of real execution time in ATLAS
and reported execution time from TASSEL. Num-
bers are normalized to the one processor case of
each application and platform (ATLAS to ATLAS
and TASSEL to TASSEL).

4.3 Wall Clock Time Comparison
Figure 6 compares the wall clock execution time of ATLAS

and TASSEL. The left bar shows the advantage of ATLAS
over TASSEL for the total execution time, which is the to-
tal time spent running the application and is the amount
of time the user waits for results. The graph demonstrates
that, as the number of modeled processors increases, AT-
LAS is an increasingly faster tool to use. Moreover, most
of the applications are in the range of two orders of mag-
nitude in speedup, which from an user’s perspective is the
difference between hours and minutes of waiting for applica-
tion results. The right bar in Figure 6 is ATLAS’ advantage
when we considered only the profiled portion of the applica-
tion, which is the portion of the application that TASSEL
actually simulates and does not fast-forward past. In this
case, the ATLAS advantage is often higher than 100x. As
applications for CMPs use increasingly larger datasets and
more complex algorithms, we expect that the advantage of
of ATLAS over TASSEL will be closer to that reported by
the profiled bars.

The advantage of ATLAS over TASSEL highly depends
on the amount of time each application spends on operating
system services (TLB misses and page faults). TASSEL does
not model OS overheads. ATLAS uses a single PowerPC 405
core to run the operating system requests for all threads and
this can become a bottleneck. For example, radix works
on a 2 MB dataset, so it has a large number of data TLB
misses due to the small 4 KB pages our Linux kernel enlists.
In fact, at eight processors, the contention for the Linux
PPC increases by almost 2,000 cycles per TLB miss (up
from 600 cycles in the uniprocessor case). This observation
has prompted us to investigate methods to address these
overheads that can otherwise cancel some of the benefits
from parallelization and transactional memory. A software
simulator alone would not allow us to identify this issue.

4.4 Speedup and Execution Time Breakdown
Figure 7 compares the reported speedups by ATLAS and

TASSEL for each application run. The speedup is calcu-
lated by comparing an n-processor run to a sequential run

0

10

20

30

40

50

60

70

80

90

100

A T A T A T A T A T A T A T A T A T A T A T A T A T A T A T A T A T A T A T A T

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

radix vacation mp3d hashtable ocean

Applications

B
re

a
k
d
o
w

n
 (

%
)

Useful L1 Miss Commit Idle Violation

Figure 8: Breakdown of profiled real execution time
in ATLAS and reported execution time from TAS-
SEL. Numbers are normalized to the one processor
case of each method.

in the same system. For TASSEL, we use the predicted ex-
ecution time by the simulator, not the time the simulator
took to run. ATLAS and TASSEL generally show simi-
lar speedup trends relative to their respective uniprocessor
execution times. However, TASSEL tends to report that
applications should scale better than ATLAS does, and the
hashtable benchmark demonstrates some deviant behavior.
Hashtable’s anomalous behavior and ATLAS’ predilection to
serialize more at eight processor than TASSEL is explained
by exploring the execution time breakdown chart depicted
in Figure 8. One trend that is salient across the breakdown
chart is that ATLAS’ commit time occupies a larger share
of execution time than TASSEL’s. To explain this trend we
note the following: First, ATLAS’ commit overhead is larger
because to clear the speculative state tags in the cache it
takes almost 260 cycles in ATLAS instead of the one-cycle
gang clear in TASSEL. Second, as the number of processors
scales, the commit time to useful time ratio increases since
the commit overhead remains constant while the useful work
time decreases. Thus, at eight processors, ATLAS does not
amortize its commit overhead (since it is larger) as well as
TASSEL does, resulting in slightly less speedup.

The graph indicates that hashtable does not scale to eight
processors due to the poor locality it exhibits in its data
references as it performs random accesses to a large hash
table. The mediocre scaling can be attributed to the poor
locality it exhibits in its data references as it performs ran-
dom accesses to a large hash table. With a small number
of processors, the memory bandwidth is not saturated by
all the cache refills. However, at eight CPUs, the number
of cache refills sent to the ICN cause significant contention.
For ATLAS, the cache refills escalate from 57 cycles in the
uniprocessor case (no contention) to 80 cycles at eight CPUs.
TASSEL experiences an even larger refill time increase from
40 cycles in one processor to 146 cycles in eight processors.
The discrepancies are due to the different ICN topologies.
TASSEL models a shared-bus, which apparently saturates
in hashtable, whereas ATLAS’ network is a two-level arbi-
tration ICN as depicted in Figure 3).

In summary, there is good correlation between the speedup
trends observed in ATLAS and TASSEL, suggesting that
ATLAS can confidently propel software research on trans-
actional memory.

5. ATLAS DESIGN EXPERIENCE
The design experience from ATLAS allows us to make

some observations and identify challenges for constructing
FPGA-based frameworks for CMP research. This section
summarizes the most important issues.

Lesson 1: Despite the lower clock frequency as
compared to modern workstations, FPGA-based CMP
environments can outperform software simulators
by two orders of magnitude.

As demonstrated in Section 4, ATLAS outperforms the
corresponding software simulator, in terms of wallclock time,
by an average of 124x for the applications studied. This re-
sult is particularly interesting since the simulator is running
on a 2GHz workstation while ATLAS runs at 100MHz. The
main advantage of the FPGA-based approach is that it actu-
ally uses multiple processors instead of multiplexing multiple
simulated processors on one actual processor, which implies
that the advantage of FPGA-based systems will improve as
the number of cores in CMPs increases. Second, the soft-
ware simulator spends most of its time approximating the
timing of the processors, the complex memory system, and
the interconnect network. On the FPGA system, all these
component exist with actual hardware implementations and
operate at the system clock frequency. Overall, this result
provides an interesting data point for the debate within the
computer architecture community about the proper tools to
use for CMP research, particularly given the importance of
novel software development and the use of large datasets
that can stress a CMP system. The combination of these
factors provides an opportunity to benefit from the rich re-
sources and the inherent parallelism of modern FPGAs.

Lesson 2: The major challenges when mapping
ASIC-style RTL for a CMP system on an FPGA are
highly associative memory structures, large lower-
level caches, and interconnect fabrics that span across
FPGAs.

Traditionally, FPGAs trade-off logic density for configura-
bility. Nevertheless, modern FPGAs are increasingly denser
and equipped with basic blocks such as dual-ported SRAMs,
DSP blocks, and embedded hardcore processors to name a
few. The improved capabilities of FPGAs allow for CMP de-
signs of significant complexity to be mapped to a few FPGA
chips. Nonetheless, there are some challenges faced when
mapping certain components of ASIC CMP RTL on FPGA
chips.

The first challenge is mapping highly-associative struc-
tures that are commonly used in CMP designs to implement
content-addressable memories (CAM), hardware schedulers,
victim caches, and state bits with gang set/reset capabilities.
FPGA vendors now embed CAMs in their chips. Although
CAMs have many useful applications for searching, they do
not help with structures that use gang set or reset opera-
tions. In TCC, for example, we must clear all the SM and
SR bits in the cache on transaction boundaries. On a vio-
lation, we must clear the valid bits for cache-lines with SM
bits set (conditional gang reset). These operations are fast
in ASIC prototypes using full-custom memory cell design. If

PowerPC 405 MicroBlaze Nios II Leon (V3.0) Tensilica OpenRISC

Type Hard Soft Soft Soft Soft Soft
Software Support A+ C C B+ B B

MMU Yes No No Yes Yes Yes
Area usage* Minimal Small Small Large Large Medium

Max. Frequency** Fast Medium Medium Slow Slow Slow
FPU No Single Precision Single Precision Configurable Configurable No

* Small: 2∼3,000 LUTs, Medium: 5,000 10,000 LUTs, Large: 20,000∼30,000 LUTs
** Fast: ∼400MHz, Medium: ∼200MHz, Slow: 50∼70MHz

Table 2: Available Processor IPs

the same RTL is mapped to an FPGA, the result is highly
sub-optimal. Our original TCC cache RTL used ASIC-style
assumptions and used LUT flip-flops for the 17 kbits of SM
and SR bits. This design consumed 112,000 LUTs or 160%
of the total FPGA resources. To reduce utilization, we mod-
ified the RTL to allocate these bits into BRAMs. Clearing
these bits now requires 257 cycles of pipelined read-modify-
write operations using both BRAM ports. Nonetheless, an
operation that the rest of the design expects to be atomic
now takes multiple cycles, which created several design bugs.
Hence, dealing with highly associative structures can lead to
both density and correctness issues.

Second, very large memory arrays can be challenging for
FPGAs. While L1 caches for CMP cores are small and can
be handled easily by BRAMs, it is not the case for large
secondary caches which range into the multiple Mbytes. To
accommodate large secondary caches, one can use external
memories, either SRAMs [21] or DRAMs, depending on the
specific system used. Note, however, that the use of external
memories may further complicate control and timing issues
for the modeled architecture.

An additional challenge is porting designs that span mul-
tiple FPGAs. CMPs have a distinct advantage over large
uniprocessor designs because they are naturally partitioned.
Thus, the CMP cores themselves and their private caches
are not as effected by inter-FPGA latencies. However, the
interconnection network (ICN) is often constrained by the
inter-FPGA network on the specific board used. For exam-
ple, our initial design used a bus to interconnect the pro-
cessor cores. To map to the BEE2 board, we modified the
design to use a star-like interconnect that matched the board
layout. Naturally, such changes can affect latency and band-
width assumptions in the system as illustrated by the hash
table application’s behavior (described in Section 4.4).

There are a few techniques one can employ to effectively
deal with such design challenges. One mechanism is to vir-
tualize the inter-FPGA boundaries to provide the illusion
that the design is mapped on one large FPGA. This virtu-
alization involves tracking the cycle count for the modeled
design separately from the cycles at which the FPGA system
operates [30] and properly stopping/starting design modules
to accommodate the desired latencies in modeled clock cy-
cles [30]. Hence, an inter-FPGA communication that takes 5
real clock cycles can be accounted for more or fewer modeled
clock cycles. This approach can be applied at any granular-
ity but is more efficient to handle at the boundaries of large
modules that are likely to operate asynchronously anyway.
We did not employ this technique as cycle-level accuracy
was not a priority for ATLAS.

Lesson 3: For projects with a heavy focus on soft-
ware research, it is important to select a base pro-
cessor core with rich software support and features.
Other criteria, such as flexibility and size, are sec-
ondary.

When architecting a CMP, one can design processor cores
from scratch, or reuse an existing core design in order to
reduce the overall project complexity. Table 2 presents the
characteristics of the most significant cores available. Note
that because most of the soft processors are configurable and
FPGAs are actively evolving, numbers may vary depending
on target device and configured features. Unfortunately,
there is no core that universally satisfies the requirements of
all users. Rather, researchers should carefully consider the
priorities of their project before selecting a specific core.

For our project, rich and robust software support was the
highest priority as the goal of the project is to enable soft-
ware research. Thus, we considered issues such as stable OS,
compiler, auxiliary libraries, and ample user group. Hence,
cores without an MMU that cannot run full-featured Linux
were of little interest (e.g., Nios and Microblaze). An ad-
ditional consideration was the FPGA resources occupied by
the cores. A compact core design allows for more resources
to be used for the memory hierarchy, which is the major
area of innovation for the TCC architecture. Consequently,
the PowerPC 405 hardcore was an appropriate choice for
ATLAS. An additional advantage of the 405 core is that it
can be clocked significantly faster than any soft core.

Nevertheless, the choice of a hardcore can have disadvan-
tages. First, we cannot modify the core in any way. This
choice results in adding the TCC cache as an external data
cache with a 13-cycle hit latency instead of 1-cycle. Simi-
larly, we cannot add further instructions to facilitate faster
interactions between the core and the cache. Another disad-
vantage of the 405 core in the Virtex-II Pro devices is that
it does not provide a mechanism to connect it with a syn-
thesized FPU. Therefore, all FP operations are emulated
in software at a significant performance cost for scientific
workloads. This limitation has been addressed in Virtex-4
devices. While these disadvantages are important, they were
not sufficient to motivate the use of a softcore. We also took
into account the design time necessary to modify and debug
any new features we would introduce to the core.

We should point out that our experience with a hardcore
CPU in FPGAs is not necessarily different than what many
CMP designers deal with. In many cases, they must build
a CMP using the pre-existing layout for a core that was not
necessarily optimized for their system [31].

Lesson 4: The use of IP core libraries is crucial to
shortening the system development time. However,
there is a need for cores with improved interfaces
for debugging and performance profiling purposes.

FPGA-based frameworks have been considered to require
more effort than software simulators. This belief is mainly
due to the time required for RTL development of the vari-
ous smaller system components that are necessary for full-
system modeling. The availability of pre-designed IP li-
braries has significantly reduced the design efforts for FP-
GAs. ATLAS makes heavy use of components available
through Xilinx and RAMP such as the DRAM and eth-
ernet controllers. Nevertheless, debugging and performance
tuning with pre-designed IP is not necessarily easy. Most of
these components lack debugging interfaces and profiling ca-
pabilities. Hence, it is difficult to identify and track bugs or
performance bottlenecks without significant effort creating
wrappers for such modules. In essence, each IP component
should provide an Integrated Logic Analyzer (ILA) inter-
face that allows the designer to capture detailed information
and control its operation during debugging. Moreover, com-
ponents should maintain statistics related to performance
(stalls, contention, etc). To avoid unnecessarily penalizing
the final design in terms of area or clock frequency, it should
also be possible to disable the debugging and profiling fea-
tures on each module. Most of the major components in
ATLAS were developed with these guidelines in mind.

The PowerPC 405 core and the accompanying Xilinx soft-
ware (Xilinx Microprocessor Debugger or XMD) provide
good examples of hardware and software support for debug-
ging and profiling. The capabilities of these systems pro-
vided a link through a JTAG chain from the PowerPC cores
to the well-known GNU debugger. Additionally, XMD is
built on top of a Tool Command Language (TCL) shell.
This setup allowed us to develop custom scripts for bit-
stream download, system initialization, boot code down-
load, profiling support, low-level TCC cache control, and
memory range monitoring using XMD. Nevertheless, in sev-
eral cases XMD does not provide execution information that
would be valuable for external tools, such as program exit
notification. In general, hardware and software systems for
FPGA-based design should move towards increased trans-
parency and flexibility to help researchers build aggressive
full-system prototypes.

6. CONCLUSION
ATLAS is the first full-system prototype of a CMP with

hardware support for transactional memory. Mapped on
the BEE2 multi-FPGA board, ATLAS operates at 100MHz,
runs Linux, exhibits good performance on parallel applica-
tions and outperforms our software simulator by two orders
of magnitude. The ATLAS design indicates that FPGA-
based frameworks can be an extremely useful tool for CMP
research. Nevertheless, the ATLAS experience also indi-
cates the challenges that researchers must face when map-
ping CMP designs to FPGAs. The issues include challenges
in mapping ASIC-style CMP RTL on to FPGAs, the se-
lection criteria for the base processor, and debugging and
profiling support in pre-designed IP libraries.

7. ACKNOWLEDGEMENTS
This research was sponsored by the Defense Advanced

Research Projects Agency (DARPA) through the Depart-
ment of the Interior National Business Center under grant
NBCH104009. The views and conclusions contained in this
document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the Defense Advanced Research Projects Agency
(DARPA) or the U.S. Government. Additional support was
also provided by the National Science Foundation Grant
CCF-0444470, the Samsung Foundation of Culture, and the
Stanford School of Engineering.

8. REFERENCES
[1] H. Sutter, “The free lunch is over: A fundamental turn

toward concurrency in software,” Dr. Dobb’s Journal,
vol. 30, March 2005.

[2] B. Lewis and D. J. Berg, Multithreaded Programming
with Pthreads. Prentice Hall, 1998.

[3] M. Herlihy and J. E. B. Moss, “Transactional memory:
Architectural support for lock-free data structures,” in
Proceedings of the 20th International Symposium on
Computer Architecture, pp. 289–300, 1993.

[4] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun, “Transactional
memory coherence and consistency,” in Proceedings of
the 31st International Symposium on Computer
Architecture, pp. 102–113, June 2004.

[5] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E.
Leiserson, and S. Lie, “Unbounded Transactional
Memory,” in Proceedings of the 11th International
Symposium on High-Performance Computer
Architecture (HPCA’05), (San Franscisco, California),
pp. 316–327, February 2005.

[6] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing
Transactional Memory,” in ISCA ’05: Proceedings of
the 32nd Annual International Symposium on
Computer Architecture, (Washington, DC, USA),
pp. 494–505, IEEE Computer Society, June 2005.

[7] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill,
and D. A. Wood, “LogTM: Log-Based Transactional
Memory,” in 12th International Conference on
High-Performance Computer Architecture, February
2006.

[8] N. Shavit and D. Touitou, “Software transactional
memory,” in Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing,
(Ottawa, Canada), pp. 204–213, August 1995.

[9] M. Herlihy, V. Luchangco, M. Moir, and I. William
N. Scherer, “Software transactional memory for
dynamic-sized data structures,” in PODC ’03:
Proceedings of the twenty-second annual symposium on
Principles of distributed computing, (New York, NY,
USA), pp. 92–101, ACM Press, July 2003.

[10] T. Harris and K. Fraser, “Language support for
lightweight transactions,” in OOPSLA ’03:
Proceedings of the 18th annual ACM SIGPLAN
conference on Object-oriented programing, systems,
languages, and applications, pp. 388–402, ACM Press,
2003.

[11] A. Welc, S. Jagannathan, and A. L. Hosking,
“Transactional monitors for concurrent objects,” in
Proceedings of the European Conference on
Object-Oriented Programming (M. Odersky, ed.),
vol. 3086 of Lecture Notes in Computer Science,
pp. 519–542, Springer-Verlag, 2004.

[12] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson,
C. Cao Minh, and B. Hertzberg, “A high performance
software transactional memory system for a multi-core
runtime,” in PPoPP ’06: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and
practice of parallel programming, (New York, NY,
USA), ACM Press, March 2006.

[13] M. F. Ringenburg and D. Grossman, “Atomcaml:
first-class atomicity via rollback,” in ICFP ’05:
Proceedings of the tenth ACM SIGPLAN international
conference on Functional programming, (New York,
NY, USA), pp. 92–104, ACM Press, 2005.

[14] V. J. Marathe, W. N. Scherer III, and M. L. Scott,
“Adaptive Software Transactional Memory,” in 19th
International Symposium on Distributed Computing,
September 2005.

[15] Arvind, K. Asanović, D. Chiou, J. C. Hoe,
C. Kozyrakis, S.-L. Lu, M. Oskin, D. Patterson,
J. Rabaey, and J. Wawrzynek, “RAMP: Research
accelerator for multiple processors - a community
vision for a shared experimental parallel HW/SW
platform,” tech. rep., 2005.

[16] C. Chang, J. Wawrzynek, and R. W. Brodersen,
“BEE2: A high-end reconfigurable computing
system,” IEEE Design and Test of Computers, vol. 22,
pp. 114–125, Mar/Apr 2005.

[17] J. Chung, H. Chafi, C. Cao Minh, A. McDonald, B. D.
Carlstrom, C. Kozyrakis, and K. Olukotun, “The
Common Case Transactional Behavior of
Multithreaded Programs,” in Proceedings of the 12th
International Conference on High-Performance
Computer Architecture, February 2006.

[18] J. Chung, C. Cao Minh, A. McDonald, H. Chafi, B. D.
Carlstrom, T. Skare, C. Kozyrakis, and K. Olukotun,
“Tradeoffs in transactional memory virtualization,” in
ASPLOS-XII: Proceedings of the 12th international
conference on Architectural support for programming
languages and operating systems, ACM Press, Oct
2006.

[19] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D.
Carlstrom, L. Hammond, C. Kozyrakis, and
K. Olukotun, “Characterization of TCC on
Chip-Multiprocessors,” in PACT ’05: Proceedings of
the 14th International Conference on Parallel
Architectures and Compilation Techniques,
(Washington, DC, USA), pp. 63–74, IEEE Computer
Society, September 2005.

[20] K. Oner, L. A. Barroso, S. Iman, J. Jeong,
K. Ramamurthy, and M. Dubois, “The design of
RPM: an FPGA-based multiprocessor emulator,” in
FPGA ’95: Proceedings of the 1995 ACM third
international symposium on Field-programmable gate
arrays, pp. 60–66, 1995.

[21] J. D. Davis, S. E. Richardson, C. Charitsis, and
K. Olukotun, “A chip prototyping substrate: the
flexible architecture for simulation and testing (fast),”

vol. 33, pp. 34–43, New York, NY, USA: ACM Press,
2005.

[22] D. Chiou, H. Sunjeliwala, D. Sunwoo, J. Xu, and
N. Patil, “Fpga-based fast, cycle-accurate, full-system
simulators,” in 2nd Workshop on Architecture
Research using FPGA Platforms, 12th International
Symposium on High-Performance Computer
Architecture (HPCA-12), February 2006.

[23] N. Dave, M. Pellauer, Arvind, and J. Emer,
“Implementing a functional/timing partitioned
microprocessor simulator with an fpga,” in 2nd
Workshop on Architecture Research using FPGA
Platforms, 12th International Symposium on
High-Performance Computer Architecture (HPCA-12),
February 2006.

[24] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle,
D. I. August, and D. A. Connors, “Exploiting
parallelism and structure to accelerate the simulation
of chip multi-processors,” in Proceedings of the 12th
International Conference on High-Performance
Computer Architecture, February 2006.

[25] J. Hong, E. Nurvitadhi, and S.-L. L. Lu, “Design,
implementation, and verification of active cache
emulator (ace),” in FPGA ’06: Proceedings of the 2006
ACM/SIGDA 14th International Symposium on Field
programmable gate arrays, (New York, NY, USA),
pp. 63–72, ACM Press, 2006.

[26] F. J. Mesa-Martinez et al., “SCOORE: Santa Cruz
out-of-order RISC engine, FPGA design issues,” in
Workshop on Architectural Research Prototyping
(WARP), held in conjunction with ISCA-33, 2006.

[27] L. Hammond, B. D. Carlstrom, V. Wong,
B. Hertzberg, M. Chen, C. Kozyrakis, and
K. Olukotun, “Programming with transactional
coherence and consistency (TCC),” in ASPLOS-XI:
Proceedings of the 11th international conference on
Architectural support for programming languages and
operating systems, (New York, NY, USA), pp. 1–13,
ACM Press, October 2004.

[28] R. A. Hankins, G. N. Chinya, J. D. Collins, P. H.
Wang, R. Rakvic, H. Wang, and J. P. Shen, “Multiple
instruction stream processor,” in ISCA ’06:
Proceedings of the 33rd International Symposium on
Computer Architecture, (Washington, DC, USA),
pp. 114–127, IEEE Computer Society, 2006.

[29] H. Chafi, C. Cao Minh, A. McDonald, B. D.
Carlstrom, J. Chung, L. Hammond, C. Kozyrakis, and
K. Olukotun, “TAPE: A Transactional Application
Profiling Environment,” in ICS ’05: Proceedings of the
19th Annual International Conference on
Supercomputing, pp. 199–208, June 2005.

[30] A. S. G. Gibeling and K. Asanović, “The RAMP
architecture & description language,” tech. rep., 2005.

[31] J. D. Gilbert, S. H. Hunt, D. Gunadi, and
G. Srinivasa, “TULSA, A Dual P4 Core Large Shared
Cache Intel Xeon Processor for the MP Server Market
Segment, Intel,” in Conference Record of Hot Chips
18, 2006.

