
Transactional Programming

In A Multi-core Environment

Ali-Reza Adl-Tabatabai Intel Corp.

Christos Kozyrakis Stanford U.

Bratin Saha Intel Corp.

PPOPP 2007 Tutorial, March 17th, 2007

2PPOPP 2007, Transactional Programming Tutorial

Presenters

� Ali-Reza Adl-Tabatabai, Intel

� Principal Engineer, Programming Systems Lab at Intel

� Compilers & runtimes for future Intel architectures

� PhD. CMU

� Christos Kozyrakis, Stanford University

� Assistant Professor, Electrical Eng. & Computer Science

� Architectures & programming models for transactional
memory

� Ph.D. UC Berkeley

� Bratin Saha

� Senior Staff Researcher, Programming Systems Lab

� Design of highly scalable runtimes for multi-core
processors

� Ph.D. Yale

3PPOPP 2007, Transactional Programming Tutorial

Tutorial Motivation & Goals

� Motivation

� Transactions are a good synchronization abstraction

� How can transactions be implemented and used ?

� Goals

1. Introduction to transactional memory

• A research technology for easier parallel programming

• Overview, uses, and implementation

4PPOPP 2007, Transactional Programming Tutorial

Agenda

� Transactional Memory (TM)

� TM Introduction

� TM Implementation Overview

� Hardware TM Techniques

� Software TM Techniques

� Q&A

5PPOPP 2007, Transactional Programming Tutorial

Tutorial Slides

� Available on-line at

http://csl.stanford.edu/~christos/ppopp07_tm.pdf

6PPOPP 2007, Transactional Programming Tutorial

� Active, online bibliography at
http://www.cs.wisc.edu/trans-memory

� “Transactional Memory” textbook by Jim Larus and

Ravi Rajwar

� A select list of key papers provided in the following

slides

TM Bibliography

7PPOPP 2007, Transactional Programming Tutorial

STM & TM Languages References
1. N. Shavit and S. Touitou. Software Transactional Memory.In Proc. of the 14th Symposium on

Principles of Distributed Computing, Aug. 1995.

2. M. Herlihy et al. Software Transactional Memory for Dynamic-sized Data Structures. In Proc of
the 22nd Symposium on Principles of Distributed Computing, July 2003.

3. T. Harris and K. Fraser. Language Support for Lightweight Transactions. In Proc. of the 18th
Conference on Object-oriented Programming, Systems, Languages, and Applications, 2003.

4. V. Marathe, W. Scherer, and M. Scott. Adaptive Software Transactional Memory. In Proc. of
the 19th Intl. Symposium on Distributed Computing, Sept. 2005.

5. P. Charles et al. X10: An Object-oriented Approach to Nonuniform Cluster Computing. Proc.
of the 20th Conference on Object-oriented Programing, Systems, Languages, and
Applications. Oct. 2005.

6. E. Allen et al. The Fortress Language Specification. Sun Microsystems, 2005.

7. Chapel Specification. Cray, February 2005.

8. Hudson et al. McRT-Malloc: A Scalable Transaction Aware Memory Allocator. ISMM 2006

9. B. D. Carlstrom et al. The Atomos Transactional Programming Language. In Proc. of the
Conference on Programming Language Design and Implementation, June 2006.

10. N. Shavit and D. Dice, What Really Makes Transactions Faster. Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing, June 2006.

11. B. Saha et al. Implementing a high performance software transactional memory. In Proc. of
the Conference on Principles and Practices of Parallel Processing, March, 2006

12. A. Adl-Tabatabai et al, Compiler and runtime support for efficient software transactional
memory. In Proc of the Conference on Programming Language Design and Implementation,
June 2006.

13. T. Harris et al. Optimizing Memory Transactions. In Proc of the Conference on Programming
Language Design and Implementation, June 2006.

8PPOPP 2007, Transactional Programming Tutorial

1. B. Carlstrom et al. Transactional Collection Classes. In PPoPP 2007.

2. Y. Ni et al. Open Nesting in Software Transactional Memory. In PPoPP 2007.

3. C. Wang et. al. Code Generation and Optimization for Transactional Memory Constructs in

an Unmanaged Language. In CGO 2007.

4. T. Shpeisman et al. Enforcing Isolation and Ordering in STM. In PLDI 2007.

STM & TM Languages References

9PPOPP 2007, Transactional Programming Tutorial

1. T. Knight. An Architecture for Mostly Functional Languages. In Proc. of the ACM

Conference on LISP and Functional Programming, 1986.

2. M. Herlihy and J. E. B. Moss. Transactional Memory: Architectural Support for

Lock-Free Data Structures. In Proc. of the 20th Annual Intl. Symp. on Computer

Architecture,, May 1993

3. R. Rajwar and J. R. Goodman. Transactional Lock-Free Execution of Lock-Based

Programs. In Proc. of the 10th Intl. Conference on Architectural Support for

Programming Languages and Operating Systems, Oct. 2002.

4. L. Hammond, et al. Transactional Memory Coherence and Consistency. In Proc.

Of the 31st Annual Intl. Symp. on Computer Architecture, June 2004.

5. L. Hammond, et. al. Programming with transactional coherence and consistency.

In Proc. of the 11th Intl. Conference on Architecture Support for Programming

Languages and Operating Systems, Oct. 2004.

6. S. Ananian et al. Unbounded Transactional Memory. In Proc. of the 11th Intl.

Symposium on High Performance Computer Architecture, Feb. 2005.

7. R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Memory. In Proc. of

the 32nd Annual Intl. Symp. On Computer Architecture, Jun. 2005.

8. C. Blundell, et al. Deconstructing Transactional Semantics: The Subtleties of

Atomicity. In ISCA Workshop on Duplicating, Deconstructing, and Debunking,

June 2005.

9. B. Saha, et. al. Architecture Support for Software Transactional Memory. Micro

2006.

HTM & Hybrid-TM References

10PPOPP 2007, Transactional Programming Tutorial

9. A. McDonald et al. Characterization of TCC on Chip-Multiprocessors. In Proc. of the 14th

Intl. Conference on Parallel Architectures and Compilation Techniques, Sept. 2005.

10. K. Moore et al. LogTM: Log-Based Transactional Memory. In Proc. of the 12th Intl.

Conference on High Performance Computer Architecture, Feb. 2006.

11. S. Kumar et al. Hybrid Transactional Memory. In Proc. of the Conference on Principles and

Practices of Parallel Processing, March, 2006

12. J. Chung et al. The Common Case Transactional Behavior of Multithreaded Programs. In

Proc. of the 12th Intl. Conference on High Performance Computer Architecture, Feb. 2006.

13. A. Sriraman et al. Hardware Acceleration of hardware Transactional Memory, Workshop on

Languages, Compilers, and Hardware Support for Transactional Computing, June 2006.

14. L. Ceze et al. Bulk Disambiguation of Speculative Threads in Multiprocessors, In Proc.of the

32nd Intl. Symposium on Computer Architecture, June 2006.

15. A. McDonald et al. Architectural Semantics for Practical Transactional Memory, In Proc.of

the 32nd Intl. Symposium on Computer Architecture, June 2006.

16. P. Damron et al. Hybrid Transactional Memory, In Proc. Of the 12th Intl. Conference on

Architecture Support for Programming Languages and Operating Systems, Oct. 2006.

17. J. Chung et al. Tradeoffs in Transactional Memory Virtualization , In Proc. of the 12th Intl.

Conference on Architecture Support for Programming Languages and Operating Systems,

Oct. 2006.

18. C. Minh et al. Hybrid vs. Hardware and Software Transactional Memory. In ISCA 2007.

19. W. Chuang et al. Unbounded Page-Based Transactional Memory. In ASPLOS 2006.

HTM & Hybrid-TM References

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

1

Agenda

Transactional Memory (TM)

• TM Introduction

• TM Implementation Overview

• Hardware TM Techniques

• Software TM Techniques

Q&A

Ali-Reza Adl-Tabatabai
Programming Systems Lab

Intel Corporation

Transactional Memory Introduction

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

3

Multi-core: An inflection point in SW

Multi-core architectures: an inflection point in
mainstream SW development

Writing parallel SW is hard

– Mainstream developers not used to thinking in parallel

– Mainstream languages force the use of low-level
concurrency features

Navigating through this inflection point requires
better concurrency abstractions

Transactional memory: an alternative to locks for
concurrency control

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

4

Transactional memory definition

Memory transaction: A sequence of memory operations that
execute atomically and in isolation

Atomic: An “all or nothing” sequence of operations

• On commit, all memory operations appear to take effect as a
unit (all at once)

• On abort, none of the stores appear to take effect

Transactions run in isolation

• Effects of stores are not visible until transaction commits

• No concurrent conflicting accesses by other transactions

Execute as if in a single step with respect to other threads

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

5

Transactional memory language construct

The basic atomic construct:

lock(L); x++; unlock(L); � atomic {x++;}

Declarative – user simply specifies, system implements “under the
hood”

Basic atomic construct universally proposed

– HPCS languages (Fortress, X10, Chapel) provide atomic in lieu of locks

– Research extensions to languages – Java, C#, Atomos, CaML, Haskell, …

Lots of recent research activity

– Transactional memory language constructs

– Compiling & optimizing atomic

– Hardware and software implementations of transactional memory

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

6

Example: Java 1.4 HashMap

Fundamental data structure

• Map: Key Value

public Object get(Object key) {

int idx = hash(key); // Compute hash

HashEntry e = buckets[idx]; // to find bucket

while (e != null) { // Find element in bucket

if (equals(key, e.key))

return e.value;

e = e.next;

}

return null;

}

Not thread safe: don’t pay lock overhead if you don’t need it

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

7

Synchronized HashMap

Java 1.4 solution: Synchronized layer
• Convert any map to thread-safe variant

• Explicit locking – user specifies concurrency

public Object get(Object key)
{
synchronized (mutex) // mutex guards all accesses to map m
{
return m.get(key);

}
}

Coarse-grain synchronized HashMap:
• Thread-safe, easy to program

• Limits concurrency � poor scalability
– E.g., 2 threads can’t access disjoint hashtable elements

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

8

Transactional HashMap

Transactional layer via an ‘atomic’ construct
• Ensure all operations are atomic

• Implicit atomic directive – system discovers concurrency

public Object get(Object key)
{
atomic // System guarantees atomicity
{
return m.get(key);

}
}

Transactional HashMap:
• Thread-safe, easy to program

• Good scalability

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

9

Transactions: Scalability

Concurrent read operations

– Basic locks do not permit multiple readers

• Reader-writer locks

– Transactions automatically allow multiple concurrent
readers

Concurrent access to disjoint data

– Programmers have to manually perform fine-grain locking

• Difficult and error prone

• Not modular

– Transactions automatically provide fine-grain locking

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

10

ConcurrentHashMap

public Object get(Object key) {

int hash = hash(key);

// Try first without locking...

Entry[] tab = table;

int index = hash & (tab.length - 1);

Entry first = tab[index];

Entry e;

for (e = first; e != null; e = e.next) {

if (e.hash == hash && eq(key, e.key)) {

Object value = e.value;

if (value != null)

return value;

else

break;

}

}

…

…

// Recheck under synch if key not there or interference

Segment seg = segments[hash & SEGMENT_MASK];

synchronized(seg) {

tab = table;

index = hash & (tab.length - 1);

Entry newFirst = tab[index];

if (e != null || first != newFirst) {

for (e = newFirst; e != null; e = e.next) {

if (e.hash == hash && eq(key, e.key))

return e.value;

}

}

return null;

}

}

Java 5 solution: Complete redesign

Fine-grain locking & concurrent reads: complicated & error prone

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

11

HashMap performance

Threads

T
im
e
 (
s
)

 Synch (coarse) Synch (fine) Atomic

Transactions scales as well as fine-grained locks

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

12

AVL tree performance

Threads

T
im
e
 (
s
)

Synch Atomic

Transactions don’t degrade as poorly as locks
Transactions have single-thread overhead

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

13

Transactional memory benefits

As easy to use as coarse-grain locks

Scale as well as fine-grain locks

Composition:

• Safe & scalable composition of software modules

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

14

Example: A bank application

Bank accounts with names and balances
• HashMap is natural fit as building block

class Bank {

ConcurrentHashMap accounts;

…

void deposit(String name, int amount) {

int balance = accounts.get(name); // Get the current balance

balance = balance + amount; // Increment it

accounts.put(name, balance); // Set the new balance

}

…

}

Not thread-safe – Even with ConcurrentHashMap

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

15

Thread safety

Suppose Fred has $100

T0: deposit(“Fred”, 10)

• bal = acc.get(“Fred”) <- 100

• bal = bal + 10

• acc.put(“Fred”, bal) -> 110

Fred has $120. $10 lost.

T1: deposit(“Fred”, 20)

• bal = acc.get(“Fred”) <- 100

• bal = bal + 20

• acc.put(“Fred”, bal) -> 120

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

16

Traditional solution: Locks

class Bank {

ConcurrentHashMap accounts;

…

void deposit(String name, int amount) {

synchronized(accounts) {

int balance = accounts.get(name); // Get the current balance

balance = balance + amount; // Increment it

accounts.put(name, balance); // Set the new balance

}

}

…

}

Thread-safe – but no scaling
• ConcurrentHashMap does not help

• Performance requires redesign from scratch & fine-grain locking

Fine-grain locking does not compose

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

17

Transactional solution

class Bank {

HashMap accounts;

…

void deposit(String name, int amount) {

atomic {

int balance = accounts.get(name); // Get the current balance

balance = balance + amount; // Increment it

accounts.put(name, balance); // Set the new balance

}

}

…

}

Thread-safe – and it scales!

Safe composition + performance

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

18

Transactional memory benefits

As easy to use as coarse-grain locks

Scale as well as fine-grain locks

Safe and scalable composition

Failure atomicity:

• Automatic recovery on errors

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

19

Traditional exception handling

class Bank {

Accounts accounts;

…

void transfer(String name1, String name2, int amount) {

synchronized(accounts) {

try {

accounts.put(name1, accounts.get(name1)-amount);

accounts.put(name2, accounts.get(name2)+amount);

}

catch (Exception1) {..}

catch (Exception2) {..}

}

…

}

Manually catch all exceptions and determine what needs
to be undone

Side effects may be visible to other threads before they
are undone

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

20

Failure recovery using transactions

class Bank {

Accounts accounts;

…

void transfer(String name1, String name2, int amount) {

atomic {

accounts.put(name1, accounts.get(name1)-amount);

accounts.put(name2, accounts.get(name2)+amount);

}

}

…

}

System rolls back updates on an exception

Partial updates not visible to other threads

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

21

Condition synchronization using locks

Enqueue() must explicitly notify to wake up blocking thread

Forgetting the notify causes a lost wakeup bug

Recheck isEmpty() in a loop because of spurious wakeups

Object blockingDequeue(…) {

synchronized (this) {

// Block until queue has item

while (isEmpty()) {

try {

this.wait();

} catch(InterruptedException ie) { }

}

return dequeue();

} }

Lock-based condition
synchronization uses

wait & notify

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

22

Condition synchronization with transactions

Object blockingDequeue(…) {

// Block until queue has item

atomic {

if (isEmpty())

retry;

return dequeue();

}

}

retry

• Rolls back (nested) transaction

• Waits for change in memory state

• Store by another thread implicitly signals blocked thread

���� No lost wakeups

• See paper by Harris et al [PPoPP ’05] & Adl-Tabatabai et al [PLDI ‘06]

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

23

Conditional atomic regions

Object blockingDequeue(…) {

// Block until queue has item

when (!isEmpty())

return dequeue();

}

when

• Blocks until condition holds

• See Harris & Fraser’s paper in [OOPSLA ’03] and IBM X10 paper in

[OOPSLA ’05]

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

24

Composing alternatives

atomic {

q1.blockingDequeue();

} orelse {

q2.blockingDequeue();

} orelse {

q3.blockingDequeue();

}

orelse

• Execute exactly one clause atomically

• Left-bias: Try in order

• User retry: Try next alternative

���� Allows composition of alternatives

• See paper by Harris et al [PPoPP’05] & Adl-Tabatabai et al [PLDI‘06]

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

25

Scalability of component-based software
using TM

Mainstream software composed using modular SW components

– TM makes this easy for parallel apps

Component-based code can form long-running transactions

� large read & write sets + long execution time

Long-running transactions may not perform well

– More likely to conflict

– More expensive to abort

– Higher STM overheads

– Won’t fit in cache

Many false data conflicts in components-based code

– 2 API calls that don’t conflict semantically but conflict at the memory level

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

26

Nested transactions

class AtomicHashMap {

HashMap m;

Object get(Object key) {

atomic {return m.get(key);}

}

Object put(Object key,Object val) {

atomic {return m.put(key,val);}

}

. . .
}

T1:

atomic {

. . .

v2=m.get(k2);

. . .

}

T2:

atomic {

. . .

m.put(k3,v3);

. . .

}

Closed nesting: child transaction merged into parent on commit

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

27

Example: HashMap

T1:

atomic {

. . .

v = m.get(k2);

. . .

}

T2:

atomic {

. . .

m.put(k3,v3);

. . .

}

K1:v1 K2:v2

K3:v3

Conflict!

T1 & T2 conflict at the memory level but not at the semantic level
Semantically, conflict only if T2 updates the value that T1 gets

Solution: T1 should remember only that k2 was accessed

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

28

Open nested transactions

Object get(Object key) {

atomic

{return map.get(key);} }

Object put(Object key, Object value) {

atomic

{

Object oldValue = map.put(key, value);

return oldValue;

}

onabort {

if (oldValue != null)

map.put(key,oldValue);

else map.remove(key);

}

[key:SHARED] [key:EXCLUSIVE]openatomic openatomic

Open atomic:
• commit makes side effects
visible independently of parent

Abstract locks:
• avoids semantic level conflicts

Compensating actions:
• rolls back side effects on parent
abort

See paper by Ni et al [PPoPP’07] & Carlstrom et al [PPoPP’07]

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

29

Summary

Multicore: an inflection point in mainstream SW development

Navigating inflection requires new language abstractions
– Safety

– Scalability & performance

– Modularity

Transactional memory enables safe & scalable composition of
software modules
– Automatic fine-grained & read concurrency

– Avoids deadlock

– Automatic failure recovery

– Avoids lost wakeups, allows composition of alternatives

– Allows development of scalable libraries via open nesting

Many open research challenges

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

30

Research challenges

Performance

– Compiler optimizations

– Right mix of hardware & software components

– Dealing with contention

Semantics

– Memory model

– Nested parallelism

– Integration with locks

Debugging & performance analysis tools

– Good diagnostics

System integration

– I/O

– Transactional OS

– Distributed transactions

9/17/2006 Transactional memory tutorial
© Ali-Reza Adl-Tabatabai & Bratin Saha

31

Questions?

© Christos Kozyrakis 1PPoPP 2007, Transactional Memory Tutorial

Agenda

� Transactional Memory (TM)

• TM Introduction

• TM Implementation Overview

• Hardware TM Techniques

• Software TM Techniques

� Q&A

Transactional Memory

Implementation Overview

Christos Kozyrakis

Computer Systems Laboratory

Stanford University

http://csl.stanford.edu/~christos

© Christos Kozyrakis 3PPoPP 2007, Transactional Memory Tutorial

TM Implementation Requirements

� TM implementation must provide atomicity and isolation

• Without sacrificing concurrency

� Basic implementation requirements

• Data versioning

• Conflict detection & resolution

� Implementation options

• Hardware transactional memory (HTM)

• Software transactional memory (STM)

• Hybrid transactional memory

© Christos Kozyrakis 4PPoPP 2007, Transactional Memory Tutorial

Data Versioning

� Manage uncommited (new) and commited (old) versions of

data for concurrent transactions

1. Eager (undo-log based)

• Update memory location directly; maintain undo info in a log

+ Faster commit, direct reads (SW)

– Slower aborts, no fault tolerance

2. Lazy (write-buffer based)

• Buffer writes until commit; update memory location on commit

+ Faster abort, fault tolerance

– Slower commits, indirect reads (SW)

© Christos Kozyrakis 5PPoPP 2007, Transactional Memory Tutorial

Eager Versioning Illustration

Begin Xaction

Thread

X: 10 Memory

Undo

Log

Write X←15

Thread

X: 15 Memory

Undo

LogX: 10

Commit Xaction

Thread

X: 15 Memory

Undo

LogX: 10

Abort Xaction

Thread

X: 10 Memory

Undo

LogX: 10

© Christos Kozyrakis 6PPoPP 2007, Transactional Memory Tutorial

Lazy Versioning Illustration

Begin Xaction

Thread

X: 10 Memory

Write

Buffer

Write X←15

Thread

X: 10 Memory

Write

BufferX: 15

Abort Xaction

Thread

X: 10 Memory

Write

BufferX: 15

Commit Xaction

Thread

X: 15 Memory

Write

BufferX: 15

© Christos Kozyrakis 7PPoPP 2007, Transactional Memory Tutorial

Conflict Detection

� Detect and handle conflicts between transaction
• Read-Write and (often) Write-Write conflicts

• For detection, a transactions tracks its read-set and write-set

1. Pessimistic detection
• Check for conflicts during loads or stores

� HW: check through coherence lookups

� SW: checks through locks and/or version numbers

• Use contention manager to decide to stall or abort

� Various priority policies to handle common case fast

2. Optimistic detection
• Detect conflicts when a transaction attempts to commit

� HW: write-set of committing transaction compared to read-set of others
– Committing transaction succeeds; others may abort

� SW: validate write-set and read-set using locks and version numbers

� Can use separate mechanism for loads & stores (SW)

© Christos Kozyrakis 8PPoPP 2007, Transactional Memory Tutorial

Pessimistic Detection Illustration

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

check

check

wr C

check

commit

commit

Success

X0 X1

wr A

rd A

check

check

commit

commit

Early Detect

stall

X0 X1

rd A

wr A

check

check

commit

commit

Abort

restart

rd A

check

X0 X1

rd A

check

No progress

wr A

rd A
wr A

check

restart

rd A

check

wr A

restart

rd A
wr A

check

restart

T
IM
E

© Christos Kozyrakis 9PPoPP 2007, Transactional Memory Tutorial

Optimistic Detection Illustration

Case 1 Case 2 Case 3 Case 4

X0 X1

rd A

wr B

wr C

commit

commit

Success

X0 X1

wr A

rd A

commit

Abort

restart

X0 X1

rd A

wr A

commit

Success

X0 X1

rd A

Forward

progress

wr A

rd A
wr A

check

check

check

rd A

check

commit
check

commit
check

restart

rd A
wr A

commit
check

T
IM
E

commit
check

© Christos Kozyrakis 10PPoPP 2007, Transactional Memory Tutorial

Conflict Detection Tradeoffs

1. Pessimistic conflict detection (aka encounter or eager)

+ Detect conflicts early

• Undo less work, turn some aborts to stalls

– No forward progress guarantees, more aborts in some cases

– Locking issues (SW), fine-grain communication (HW)

2. Optimistic conflict detection (aka commit or lazy)

+ Forward progress guarantees

+ Potentially less conflicts, no locking (SW), bulk

communication (HW)

– Detects conflicts late, still has fairness problems

� Contention management important with both approaches

• E.g., backoff to avoid convoying

© Christos Kozyrakis 11PPoPP 2007, Transactional Memory Tutorial

Implementation Space

� No convergence yet

� Decision will depend on

• Application characteristics

• Importance of fault tolerance, complexity

• Success of contention managers

� May have different approaches for HW, SW, and hybrid

• It may not even matter…

HW: Stanford TCC

SW: Sun TL/2Optimistic

HW: MIT LTM, Intel VTM

SW: MS-OSTM

HW: UW LogTM

SW: Intel McRT, MS-STMPessimistic

C
o
n
flic

t

D
e
te
c
tio

n

LazyEager

Version Management

[This is just a subset of proposed implementations]

© Christos Kozyrakis 12PPoPP 2007, Transactional Memory Tutorial

Conflict Detection Granularity

� Object granularity (SW/hybrid)

+ Reduced overhead (time/space)

+ Close to programmer’s reasoning

– False sharing on large objects (e.g. arrays)

– Unnecessary aborts

� Word granularity

+ Minimize false sharing

– Increased overhead (time/space)

� Cache line granularity

+ Compromise between object & word

+ Works for both HW/SW

� Mix & match � best of both words

• Word-level for arrays, object-level for other data, …

© Christos Kozyrakis 13PPoPP 2007, Transactional Memory Tutorial

Atomicity to Non-Transactional Code

� Are transactional blocks atomic with respect to non-transactional

accesses

• Yes � strong atomicity; No � weak atomicity

� More complicated in practice (see [PLDI’07])

• Non-repeatable reads, lost updates, dirty reads, speculative lost
updates, speculative dirty reads, overlapped writes, …

� Strong atomicity is generally preferred

• Otherwise there can be consistency and correctness issues

• HTMs naturally build strong atomicity on top of coherence events

• STMs require additional barriers [PLDI’07] or HW filters [ISCA’07]

. . .

atomic {

write X’;

. . .

write X’’;

}

P1 . . .

. . .

. . .

read X;

. . .

. . .

P2

© Christos Kozyrakis 14PPoPP 2007, Transactional Memory Tutorial

Interactions with PL & OS

� Challenging issues

• Interaction with library-based software, I/O, exceptions, & system

calls within transactions, error handling, schedulers, conditional

synchronization, memory allocators, new language features, …

� Necessary TM semantics

1. Two-phase commit
� Separate validation from commit

2. Transactional handlers for commit/abort/conflict
� All interesting events switch to software handlers

� Mechanisms for registering software handlers

3. Support for nested transactions
� Closed: independent rollback & restart for nested transactions

� Open: independent atomicity and isolation for nested transactions

� See McDonald’s paper in [ISCA’06]

© Christos Kozyrakis 15PPoPP 2007, Transactional Memory Tutorial

Closed Nested Transactions

X
1

�
T
im
e

xbegin

. . .

ld A

st B

st C

. . .

xbegin

ld D

st B

st E

. . .

X
2

xvalidate

xcommit

ld F

xvalidate

xcommit

DC E

Value

FBAAddress

Shared Memory

Write-Set

Read-set

X1 State

Write-Set

Read-set

X2 State

A

B1, C1

D

B2, E2

A, D

B2, C1 , E2

A, D, F

B2 C1 E2A0 B0 C0 D0 E0 F0

© Christos Kozyrakis 16PPoPP 2007, Transactional Memory Tutorial

Open Nested Transactions

X
1

�
T
im
e

xbegin

. . .

ld A

st B

st C

. . .

xbegin_open

ld D

st B

st E

. . .

X
2

xvalidate

xcommit

ld F

xvalidate

xcommit

DC E

Value

FBAAddress

Shared Memory

Write-Set

Read-set

X1 State

Write-Set

Read-set

X2 State

A

B1, C1

D

B2, E2

B2, C1

A, F

B2 C1 E2A0 B0 C0 D0 E0 F0

© Christos Kozyrakis 17PPoPP 2007, Transactional Memory Tutorial

Nested Transactions Summary

� Closed nesting

• Independent rollback and restart

� Read-set and write-set tracked independently from parent

� On inner conflict, abort inner transaction but not outer

� On inner commit, merge with parent’s read-set and write-set

• Uses: reduce cost of conflict, allow alternate execution paths

� Open nesting

• Independent atomicity and isolation for nested transactions

� On inner commit, shared memory is updated immediately

� Independent rollback similar to closed nesting

• Uses: reduce frequency of conflicts, scalable & composable

libraries, system and runtime code

� See [ISCA’06], [PLDI’06], and two papers in [PPoPP’07]

� But, may be too tricky for end programmers

© Christos Kozyrakis 18PPoPP 2007, Transactional Memory Tutorial

Questions?

© Christos Kozyrakis 1PPoPP 2007, Transactional Memory Tutorial

Agenda

� Transactional Memory (TM)

• TM Introduction

• TM Implementation Overview

• Hardware TM Techniques

• Software TM Techniques

� Q&A

HTM: Hardware Transactional

Memory Implementations

Christos Kozyrakis

Computer Systems Laboratory

Stanford University

http://csl.stanford.edu/~christos

© Christos Kozyrakis 3PPoPP 2007, Transactional Memory Tutorial

Why Hardware Support for TM

� Performance

• Software TM starts with a 40% to 2x overhead handicap

� Features

• Strong atomicity is there by default

• Works for all binaries and libraries wo/ need to recompile

• Depending on the implementation

� Word-level conflict detection, forward progress guarantees, …

� How much HW support is needed?

• This is the topic of ongoing research

• All proposed HTMs are essentially hybrid

� Add flexibility by switching to software on all interesting events

© Christos Kozyrakis 4PPoPP 2007, Transactional Memory Tutorial

HTM Mechanisms Summary

� Data versioning in caches

• Cache the write-buffer or the undo-log

• Zero overhead for both loads and stores

� The cache HW handles versioning and detection transparently

• Can do with private, shared, and multi-level caches

� Conflict detection through some cache coherence protocol

• Coherence lookups detect conflicts between transactions

• Works with snooping & directory coherence

� Notes

• Register checkpoint must be taken at transaction begin

• Virtualization of hardware resources discussed later

• HTM support similar to that for thread-level speculation (TLS)

� Some HTMs support both TM and TLS

© Christos Kozyrakis 5PPoPP 2007, Transactional Memory Tutorial

HTM Design

� Cache lines annotated to track read-set & write set

• R bit: indicates data read by transaction; set on loads

• W bit: indicates data written by transaction; set on stores

� R/W bits can be at word or cache-line granularity

• R/W bits gang-cleared on transaction commit or abort

• For eager versioning, need a 2nd cache write for undo log

� Coherence requests check R/W bits to detect conflicts

• Shared request to W-word is a read-write conflict

• Exclusive request to R-word is a write-read conflict

• Exclusive request to W-word is a write-write conflict (may be OK)

V D E Tag R W Word 1 R W Word N. . .

© Christos Kozyrakis 6PPoPP 2007, Transactional Memory Tutorial

HTM Example (Lazy, Optimistic)

� T1 copies foo into bar

� T2 should read [0, 0] or should read [9,7]

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

0 0

0 0

0 0

0 0

R WTag

CACHE 1

0 0

0 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 2

© Christos Kozyrakis 7PPoPP 2007, Transactional Memory Tutorial

HTM Example (1)

� Both transactions make progress independently

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

1 0 9

0 1 9

0 0

0 0

R WTag

CACHE 1

0 0

0 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 2

foo.x

bar.x

© Christos Kozyrakis 8PPoPP 2007, Transactional Memory Tutorial

HTM Example (2)

� Both transactions make progress independently

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

1 0 9

0 1 9

0 0

0 0

R WTag

CACHE 1

1 0 0

0 1 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 2

foo.x

bar.x

bar.x

t1

© Christos Kozyrakis 9PPoPP 2007, Transactional Memory Tutorial

HTM Example (3)

� Transaction T1 is now ready to commit

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

1 0 9

0 1 9

1 0 7

0 1 7

R WTag

CACHE 1

1 0 0

0 1 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=0, y=0

foo

bar

CACHE 1

foo.x

bar.x

bar.x

t1

foo.y

bar.y

© Christos Kozyrakis 10PPoPP 2007, Transactional Memory Tutorial

HTM Example (3)

� T1 updates shared memory

• R/W bits are cleared

• This is a logical update, data may stay in caches as dirty

� Exclusive request for bar.x reveals conflict with T2

• T2 is aborted & restarted; all R/W cache lines are invalidated

• When it reexecutes, it will read [9,7] without a conflict

atomic {

bar.x = foo.x;

bar.y = foo.y;

}

T1 atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

0 0 9

0 0 9

0 0 7

0 0 7

R WTag

CACHE 1

1 0 0

0 1 0

0 0

0 0

R WTag

MEMORY

x=9, y=7

x=9, y=7

foo

bar

CACHE 2

foo.x

bar.x

bar.x

t1

foo.y

bar.y

Excl bar.x
Excl bar.y

Conflict

© Christos Kozyrakis 11PPoPP 2007, Transactional Memory Tutorial

Support for Nested Transactions

� Caches track read-sets & write-sets multiple transactions
• Multi-tracking for eager versioning, associativity best for lazy

• Gange-merge or lazy merge at inner commit

� See paper by McDonald at [ISCA’06] for details
• Including HW and SW interactions around nesting

Multi-tracking

Associativity-based NL1:0V

MOESI

D E Tag

=

Lookup

Address

Match?
Match

Level

Data
...
...R W

© Christos Kozyrakis 12PPoPP 2007, Transactional Memory Tutorial

HTM Virtualization

� Space virtualization � What if caches overflow?

• Where is the write-buffer or log stored?

• How are R & W bits stored and checked?

� Time virtualization � What if time quanta expires?

• Interrupts, paging, and thread migrations half-way through

transactions

� Nesting virtualization � What if nesting level exhausted?

� Observations: most transactions are currently small

• Small read-sets & write-sets, short in terms of instructions,

nesting is uncommon

• See paper by Chung at [HPCA’06]

© Christos Kozyrakis 13PPoPP 2007, Transactional Memory Tutorial

Time Virtualization

� Three-tier interrupt handling for low overhead

1. Defer interrupt until next short transaction commits

• Use that processor for interrupt handling

2. If interrupt is critical, rollback youngest transaction

� Most likely, the re-execution cost is very low

3. If a transaction is repeatedly rolled back due to interrupts

• Use space virtualization to swap out (typically higher overhead)

• Only needed when most threads run very long transactions

� Key assumption

• Rolling back a short transaction is cheaper than virtualizing it

� See paper by Chung at [ASPLOS’06]

© Christos Kozyrakis 14PPoPP 2007, Transactional Memory Tutorial

Space Virtualization

� Virtualized TM (Rajwar @ [ISCA’05])

• Map the write-buffer & read/write-set in virtual memory

� They become unbounded; they can be at any physical location

• Caches capture working set of write-buffer/undo-log

� Hardware and firmware handle misses, relocation, etc

� Bloom filters used to reduce lookups in virtual memory

� eXtended TM (Chung @ [ASPLOS’06])

• Use OS virtualization capabilities (virtual memory)

� On overflow, use page-based TM � no HW/firmware needed

� Similar to page-based DSM, but used only as a back up

� Overflow either all transaction state or just a part of it

• Works well when most transactions are small

� Page-based TM (Chuang @ [ASPLOS’06]

• Similar to XTM but hardware manages overflow metadata

• Requires new HW caches at the memory controller level

© Christos Kozyrakis 15PPoPP 2007, Transactional Memory Tutorial

Hybrid TM Implementations

� Combine the best of both worlds

• Performance of HTM; virtualization, cost, and flexibility of STM

� Dual TM implementations [PPoPP’06, ASPLOS’06]

• Start transaction in HTM; switch to STM on overflow, abort, …

• Typically requires 2 versions of the code

• Carefully handle interactions between HTM & STM transactions

� HW accelerated STM (HASTM [Micro’06])

• Provide key primitives for STM code to use

� Add SW controlled mark bits to cache lines (private, non-persistent)

� Focusing mostly on read/write-set tracking, not version management

• Enables SW to build powerful filters for read/write barriers

� Have I accessed this address before? Has anyone modified it?

� If transaction fits in cache, this is close to HTM speed

• There is still a SW path to guarantee correct operation in all cases

© Christos Kozyrakis 16PPoPP 2007, Transactional Memory Tutorial

Bulk Disambiguation (Ceze @ [ISCA’06])

� HTM that tracks read-sets and write-sets using signatures

• HW bloom filters replace R and W bits in caches

� One filter for read-set, one for write-set, etc

� Filters are updated on loads/stores, checked on coherence traffic

• Filters can be swapped to memory, transmitted to other processors, …

� Simple compression can reduce filter size significantly

� Tradeoffs

+ Decouples cache from read-set/write-set tracking

� Same cache design, non overflow for R and W bits

– Inexact operations can lead to false conflicts

� May lead to degradation, depending on application behavior and HW details

– Still, there are virtualization challenges

� Coherence messages must reach filter even if cache does not hold the line

� Challenge for non-broadcast coherence schemes

© Christos Kozyrakis 17PPoPP 2007, Transactional Memory Tutorial

Signature-based STM (Cao Minh @ [ISCA’07])

� Combines Bulk disambiguation + HASTM approaches

• Based on an STM system with HW acceleration

• HW filters to track read-set & write-set

� No other changes to caches (write-buffer or log in SW)

• Single code path (no fast path and slow path)

� SigTM benefits

• Performance similar to HTM

� 2x over STM, within 10% to 40% of HTM

• Strong atomicity

� Coherence requests are looked up in hardware filters

� No modifications to non-transactions code

• Simplified nesting support

� Through saving/restoring the filters on nested begin and abort

© Christos Kozyrakis 18PPoPP 2007, Transactional Memory Tutorial

Transactional Coherence

� Key observation

• For well synchronized programs, coherence &

consistency needed only at transaction boundaries

� Transactional Coherence & Consistency (TCC)

• Eliminate MESI coherence protocol

• Coherence using the R/W bits only

� Fewer/simpler states; multiple writers are allowed

• Communication logically only at commit points

� Characteristics

• Sequential consistency at transaction boundaries

• Coarser-grain communication

• Bulk coherence creates hybrid between shared-

memory and message passing

� See TCC papers at [ISCA’04], [ASPLOS’04], & [PACT’05]

foo() {

work1();

atomic {

a.x = b.x;

a.y = b.y;

}

work2();

}

© Christos Kozyrakis 19PPoPP 2007, Transactional Memory Tutorial

Warehouse

stockTable

(B-Tree)

itemTable

(B-Tree)

Performance Example: SpecJBB2000

� 3-tier Java benchmark

� Shared data within and across warehouses

• B-trees for database tier

� Can we parallelize the actions within a warehouse?

• Orders, payments, delivery updates, etc

orderTable

(B-Tree)
District

Warehouse

newIDTransaction

Manager

Driver Threads

Driver Threads

Client Tier Transaction Server Tier Database Tier

stockTable

(B-Tree)

itemTable

(B-Tree)

© Christos Kozyrakis 20PPoPP 2007, Transactional Memory Tutorial

Sequential Code for NewOrder

TransactionManager::go() {

// 1. initialize a new order transaction

newOrderTx.init();

// 2. create unique order ID

orderId = district.nextOrderId(); // newID++

order = createOrder(orderId);

// 3. retrieve items and stocks from warehouse

warehouse = order.getSupplyWarehouse();

item = warehouse.retrieveItem(); // B-tree search

stock = warehouse.retrieveStock(); // B-tree search

// 4. calculate cost and update node in stockTable

process(item, stock);

// 5. record the order for delivery

district.addOrder(order); // B-tree update

// 6. print the result of the process

newOrderTx.display();

}

� Non-trivial code with complex data-structures

• Fine-grain locking � difficult to get right

• Coarse-grain locking � no concurrency

© Christos Kozyrakis 21PPoPP 2007, Transactional Memory Tutorial

Transactional Code for NewOrder

TransactionManager::go() {

atomic { // begin transaction

// 1. initialize a new order transaction

// 2. create a new order with unique order ID

// 3. retrieve items and stocks from warehouse

// 4. calculate cost and update warehouse

// 5. record the order for delivery

// 6. print the result of the process

} // commit transaction

}

� Whole NewOrder as one atomic transaction

• 2 lines of code changed

� Also tried nested transactional versions

• To reduce frequency & cost of violations

© Christos Kozyrakis 22PPoPP 2007, Transactional Memory Tutorial

HTM Performance

� Simulated 8-way CMP with TM support

• Stanford’s TCC architecture

• Lazy versioning and optimistic conflict

detection

� Speedup over sequential

• Flat transactions: 1.9x

� Code similar to coarse-grain locks

� Frequent aborted transactions due to

dependencies

• Nested transactions: 3.9x to 4.2x

� Reduced abort cost OR

� Reduced abort frequency

� See paper in [WTW’06] for details

• http://tcc.stanford.edu

0

10

20

30

40

50

60

flat

transactions

nested 1 nested 2

N
o
rm
a
li
z
e
d
 E
x
e
c
.
T
im
e
 (
%
)

Aborted

Successful

© Christos Kozyrakis 23PPoPP 2007, Transactional Memory Tutorial

Hardware TM Summary

� High performance + compatibility with binary code

� Common characteristics

• Data versioning in caches

• Conflict detection through the coherence protocol

� Active research area; current research topics

• Support for PL and OS development (see paper [ISCA’06])

� Two-phase commit, transactional handlers, nested transactions

• Development and comparison of various implementations

� HTM vs STM vs Hybrid TMs

• Long transactions & pervasive transactions

• Scalability issues

3/17/20071 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Agenda

Transactional Memory (TM)

• TM Introduction

• TM Implementation Overview

• Hardware TM Techniques

• Software TM Techniques

Q&A

Bratin Saha
Programming Systems Lab

Intel Corporation

Software Transactional Memory

3/17/20073 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Outline

Software Transactional Memory

• Translating a language construct

• Runtime support

• Compiler support

Consistency Issues

Open issues & conclusions

3/17/20074 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Compiling Atomic

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

…

stmWr(&a.x, t1)

stmWr(&a.y, t2)

if(stmRd(&a.z) != 0) {

stmWr(&a.x, 0);

stmWr(&a.z, t3)

}

Compiler inserted instrumentation inside atomic blocks

3/17/20075 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Runtime Data Structures

Per-data

• Transaction Record (TxR)
– Pointer-sized field guarding shared data

– Track transactional state of data

• Shared: Read-only access by multiple readers

• Exclusive: write-only access by single owner

Per-thread

• Transaction Descriptor
– Read set, write set, & log

– For validation, commit, & rollback

• Transaction Memento
– Checkpoint of transaction descriptor

– For nesting & partial rollback

3/17/20076 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Mapping Data to Transaction Records

Every data item has an associated transaction record

class Foo {

int x;

int y;

}

TxR
x
y

vtbl

TxR embedded in object
Object

granularity
(Java/C#)

Cache line
or word

granularity
(C/C++)

TxR1

TxR2

TxR3

…
TxRn

Address-based hash

into global TxR table

struct Foo {

int x;

int y;

}

x
y

3/17/20077 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

struct STMDescriptor {

STMState state; /* state of transaction */

STMLog writeLock; /* write locks acq */

STMLog readLock; /* read versions acq */

STMLog writeLocations; /* undo log */

/* other fields, for example, stats … */

};

Transaction descriptor stores transaction related info
– Usually a thread local data structure

Transaction Descriptor

3/17/20078 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Implementing Atomicity: Example

We will show one way to implement atomicity in a
STM

Uses two phase locking for writes

Uses optimisitic concurrency for reads

Illustrates how the different data structures are used

3/17/20079 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Example

atomic {

t = foo.x;

bar.x = t;

t = foo.y;

bar.y = t;

}

T1

atomic {

t1 = bar.x;

t2 = bar.y;

}

T2

hdr
x = 0
y = 0

5
hdr
x = 9
y = 7

3foo bar

Reads <foo, 3>
Reads <bar, 5>

T1

x = 9

<foo, 3>

Writes <bar, 5>

Undo <bar.x, 0>

T2 waits

y = 7

<bar.y, 0>

7

<bar, 7>

Abort

•T1 copies foo into bar

•T2 should read [0, 0] or should read [9,7]

Commit

3/17/200710 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops �

Mode ↓

Read lock on TxR
(reader-writer lock
or reader list)

Use versioning
on TxR

3/17/200711 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops �

Mode ↓

- Caching effects
- Lock operations

+ Caching effects
+ Avoids lock
operations

3/17/200712 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops �

Mode ↓

Write lock
on TxR

Buffer writes &
acquire locks at

commit

3/17/200713 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Ensuring Atomicity: Options

Optimistic Concurrency

Pessimistic Concurrency

WritesReads

Memory Ops �

Mode ↓

+ In place updates
+ Fast commits
+ Fast reads

- Slow commits
- Reads have to

search for
latest value

3/17/200714 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Compiler Optimizations

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

…

stmWr(&a.x, t1)

stmWr(&a.y, t2)

if(stmRd(&a.z) != 0) {

stmWr(&a.x, 0);

stmWr(&a.z, t3)

}

Coarse-grain barriers hide redundant locking/logging

3/17/200715 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

An IR for Optimization

Redundancies exposed:

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnOpenForWrite(a)

txnLogObjectInt(&a.y, a)

a.y = t2

txnOpenForRead(a)

if(a.z != 0) {

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = 0

txnOpenForWrite(a)

txnLogObjectInt(&a.z, a)

a.z = t3

}

3/17/200716 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

An IR for optimization

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnOpenForWrite(a)

txnLogObjectInt(&a.y, a)

a.y = t2

txnOpenForRead(a)

if(a.z != 0) {

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = 0

txnOpenForWrite(a)

txnLogObjectInt(&a.z, a)

a.z = t3

}

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

Exposes redundancies
• Open for write
• Open for read

3/17/200717 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

An IR for optimization

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnOpenForWrite(a)

txnLogObjectInt(&a.y, a)

a.y = t2

txnOpenForRead(a)

if(a.z != 0) {

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = 0

txnOpenForWrite(a)

txnLogObjectInt(&a.z, a)

a.z = t3

}

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

Exposes redundancies
• Open for write
• Open for read
• Undo logging

3/17/200718 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Optimized Code

atomic {

a.x = t1

a.y = t2

if(a.z == 0) {

a.x = 0

a.z = t3

}

}

txnOpenForWrite(a)

txnLogObjectInt(&a.x, a)

a.x = t1

txnLogObjectInt(&a.y, a)

a.y = t2

if(a.z != 0) {

a.x = 0

txnLogObjectInt(&a.z, a)

a.y = t3

}

Fewer & cheaper STM operations

3/17/200719 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Compiler Optimizations for Transactions

Standard optimizations

• CSE, Dead-code-elimination, …

• Careful IR representation exposes opportunities and enables optimizations
with almost no modifications

• Subtle in presence of nesting

STM-specific optimizations

• Immutable field / class detection & barrier removal (vtable/String)

• Transaction-local object detection & barrier removal

• Partial inlining of STM fast paths to eliminate call overhead

3/17/200720 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Outline

Software Transactional Memory

Consistency Issues

– Transaction consistency

– Privatization

Open issues & conclusions

3/17/200721 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

In a STM with optimistic readers, a transaction may become
inconsistent

• Assuming validation done lazily

In a managed environment, type safety and exception handling
protects us

• Validate the transaction when an exception is raised

• Type safety ensures we don’t do wild pointer writes

In an unmanaged environment, we can not leverage type-
safety and exception handling

3/17/200722 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

3/17/200723 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

3/17/200724 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

3/17/200725 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

globalArray[i] = null at this point

3/17/200726 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to N) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to N) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

3/17/200727 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to N) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to N) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

3/17/200728 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to N) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to N) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

localArray[i] = null at this point

3/17/200729 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to localCount) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to localCount) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

T2:

// initially globalCount = N

atomic {

int localCount = globalCount

for (i = 0 to N) {

localArray[i] = globalArray[i]

globalArray[i] = null;

} /* end for */

for (i = 0 to N) {

= *localArray[i] /* use localArray */

} /* end for */

globalCount = 0;

} /* end atomic */

Exception at this point

3/17/200730 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially x == y == 0

atomic {

x++;

y++;

}

T2:

// initially x == y == 0

atomic {

temp1 = x;

temp2 = y;

if (temp1 != temp2)

temp3 = temp2 / temp1;

}

3/17/200731 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially x == y == 0

atomic {

x++;

y++;

}

T2:

// initially x == y == 0

atomic {

temp1 = x;

temp2 = y;

if (temp1 != temp2)

temp3 = temp2 / temp1;

}

3/17/200732 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially x == y == 0

atomic {

x++;

y++;

}

T2:

// initially x == y == 0

atomic {

temp1 = x;

temp2 = y;

if (temp1 != temp2)

temp3 = temp2 / temp1;

}

3/17/200733 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially x == y == 0

atomic {

x++;

y++;

}

T2:

// initially x == y == 0

atomic {

temp1 = x;

temp2 = y;

if (temp1 != temp2)

temp3 = temp2 / temp1;

}

3/17/200734 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transaction Consistency

T1:

// initially x == y == 0

atomic {

x++;

y++;

}

T2:

// initially x == y == 0

atomic {

temp1 = x;

temp2 = y;

if (temp1 != temp2)

temp3 = temp2 / temp1;

}

The divide by zero exception can happen even with a
write buffering STM

3/17/200735 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

STM in Java

Transactional Java

atomic {

S;

}

Standard Java + STM API

while(true) {

TxnHandle th = txnStart();

try {

S’;

break;

} finally {

if(!txnCommit(th))

continue;

}

}

• An exception gets caught and the transaction validated
• Language safety prevents STM structures from being corrupted

3/17/200736 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

STM in C

We can not rely on signal handlers in C

• Application may override them

An inconsistent transaction may write into STM data
structures

• Recovery becomes even more difficult

We need to make sure that a transaction does not
compute with inconsistent values

• Get the effect of eager validation

See “Code Generation … Unmanaged Environment”
CGO 2007

3/17/200737 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Privatization

Thread 1:

ListNode * elem;

atomic {

elem = head;

if (head != NULL)

head = head->next;

}

t1 = elem->val;

t2 = elem->val;

if (t1 == 1 && t2 == 0)

error();

Thread2:

atomic {

ListNode *n = head;

while (n != NULL) {

n->val ++;

n = n->next;

}

}

Initially all elements are zero

Abort

head elem

In place Update STM

0 X001

3/17/200738 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Privatization

Thread 1:

ListNode * elem;

atomic {

elem = head;

if (head != NULL)

head = head->next;

}

t1 = elem->val;

t2 = elem->val;

if (t1 == 0 && t2 == 1)

error();

Thread2:

atomic {

ListNode *n = head;

while (n != NULL) {

n->val ++;

n = n->next;

}

}

Initially all elements are zero

head elem

Write-Buffering STM

0 X001

ValidateCommit …

3/17/200739 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Privatization

Use a commit time fence to avoid privatization
problems

See “Code Generation … Unmanaged Environment”
CGO 2007

• Solves both privatization and consistency issues

3/17/200740 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Non-Transactional Memory Accesses

A TM system may isolate transactions from non-transactional
memory accesses to varying degrees

• Isolation from non-transactional writes

• Isolation from non-transactional reads

Requires instrumentation of non-transactional code in a STM

• Inserting barriers for accessing shared variables

See “Enforcing Isolation and Atomicity in STM”, PLDI 2007

3/17/200741 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Transactional Memory: Research challenges

Performance

– Right mix of HW & SW components

– Good diagnostics & contention management

Semantics

– I/O & communication

– Nested parallelism

Memory Model

– Language level guarantees

Debugging & performance analysis tools

System integration

3/17/200742 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

Conclusions

Multi-core architectures: an inflection point in mainstream SW
development

Navigating inflection requires new parallel programming
abstractions

Transactions are a better synchronization abstraction than locks

– Software engineering and performance benefits

Lots of research on implementation and semantics issues

– Great progress, but there are still open problems

3/17/200743 Transactional memory tutorial
© Bratin Saha & Ali-Reza Adl-Tabatabai

	1. Introduction

