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the hot and cold file groups. In practice there are large numbers of files that

are almost never written (cold segments in reality are much colder than the

cold segments in the simulations). A log-structured file system will isolate

the very cold files in segments and never clean them. In the simulations,

every segment eventually received modifications and thus had to be cleaned.

If the measurements of Sprite LFS in Section 5.1 were a bit over-optimistic,

the measurements in this section are, if anything, over-pessimistic. In prac-

tice it may be possible to perform much of the cleaning at night or during

other idle periods, so that clean segments are available during bursts of

activity. We do not yet have enough experience with Sprite LFS to know if

this can be done. In addition, we expect the performance of Sprite LFS to

improve as we gain experience and tune the algorithms. For example, we

have not yet carefully analyzed the policy issue of how many segments to

clean at a time, but we think it may impact the system’s ability to segregate

hot data from cold data.

5.3 Crash Recovery

Although the crash recovery code has not been installed on the production

system, the code works well enough to time recovery of various crash

scenarios. The time to recover depends on the checkpoint interval and the

rate and type of operations being performed. Table III shows the recovery

time for different file sizes and amounts of file data recovered. The different

crash configurations were generated by running a program that created one,

ten, or fifty megabytes of fixed-size files before the system was crashed. A

special version of Sprite LFS was used that had an infinite checkpoint

interval and never wrote directory changes to disk. During the recovery

roll-forward, the created files had to be added to the inode map, the directory

entries created, and the segment usage table updated.

Table III shows that recovery time varies with the number and size of files

written between the last checkpoint and the crash. Recovery times can be

bounded by limiting the amount of data written between checkpoints. From

the average file sizes and daily write traffic in Table II, a checkpoint interval

as large as an hour would result in average recovery times of around one

second. Using the maximum observed write rate of 150 megabytes/hour,

maximum recovery time would grow by one second for every 70 seconds of

checkpoint interval length.

5.4 Other Overheads in Sprite LFS

Table IV shows the relative importance of the various kinds of data written

to disk, both in terms of how much of the live blocks they occupy on disk and

in terms of how much of the data written to the log they represent. More

than ggy. of the live data on disk consists of file data blocks and indirect

blocks. However, about 13% of the information written to the log consists of

inodes, inode map blocks, and segment map blocks, all of which tend to be

overwritten quickly. The inode map alone accounts for more than 770 of all

the data written to the log. We suspect that this is because of the short
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Table III. Recovery Time for Various Crash Configurations.

Sprite LFS ~covery time in seconds

File File Data Recovered

Size 1 MB 10 MB 50 MB

1 KB 1 21 132

10KB <1 I 3 I 17

100KB <1 1 8 I
The table shows the speed of recovery of one, ten, and fifty megabytes of fixed-size files. The
system measured was the same one used in Section 5.1. Recovery time is dominated by the

number of files to be recovered.

Table IV. Disk Space and Log Bandwidth Usage of /user6.

Sprite LFS /user 6 file system contents

Block type Live data [ Log bandwidth

Data blocks* 98.0% 85.2%

Indirect blocks* 1.0% 1.6%

Inode blocks* 0.2% 2.7%

For each block type, the table lists the percentage of the disk space in use on disk (Live data) and

the percentage of the log bandwidth consumed writing this block type (Log bandwidth). The

block types marked with ‘*’ have equivalent data structures in Unix FFS.

checkpoint interval currently used in Sprite LFS, which forces metadata to

disk more often than necessary. We expect the log bandwidth overhead for

metadata to drop substantially when we install roll-forward recovery and

increase the checkpoint interval.

6. RELATED WORK

The log-structured file system concept and the Sprite LFS design borrow

ideas from many different storage management systems. File systems with

log-like structures have appeared in several proposals for building file sys-

tems on write-once media [5, 20]. Besides writing all changes in an append-

only fashion, these systems maintain indexing information much like the

Sprite LFS inode map and inodes for quickly locating and reading files. They

differ from Sprite LFS in that the write-once nature of the media made it

unnecessary for the file systems to reclaim log space.

The segment cleaning approach used in Sprite LFS acts much like scaveng-

ing garbage collectors developed for programming languages [1]. The cost-be-

nefit segment selection and the age sorting of blocks during segment cleaning

in Sprite LFS separates files into generations much like generational garbage
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collection schemes [11]. A significant difference between these garbage collec-

tion schemes and Sprite LFS is that efficient random access is possible in the

generational garbage collectors, whereas sequential accesses are necessary to

achieve high performance in a file system. Also, Sprite LFS can exploit the

fact that blocks can belong to at most one file at a time to use much simpler

algorithms for identifying garbage than used in the systems for programming

languages.

The logging scheme used in Sprite LFS is similar to schemes pioneered in

database systems. Almost all database systems use write-ahead logging for

crash recovery and high performance [6], but differ from Sprite LFS in how

they use the log. Both Sprite LFS and the database systems view the log as

the most up-to-date “truth” about the state of the data on disk. The main

difference is that database systems do not use the log as the final repository

for data: a separate data area is reserved for this purpose. The separate data

area of these database systems means that they do not need the segment

cleaning mechanisms of the Sprite LFS to reclaim log space. The space

occupied by the log in a database system can be reclaimed when the logged

changes have been written to their final locations. Since all read requests are

processed from the data area, the log can be greatly compacted without

hurting read performance. Typically only the changed bytes are written to

database logs rather than entire blocks as in Sprite LFS.

The Sprite LFS crash recovery mechanism of checkpoints and roll forward

using a “redo log” is similar to techniques used in database systems and

object repositories [151. The implementation in Sprite LFS is simplified

because the log is the final home of the data. Rather than redoing the

operation to the separate data copy, Sprite LFS recovery ensures that the

indexes point at the newest copy of the data in the log.

Collecting data in the file cache and writing it to disk in large writes is

similar to the concept of group commit in database systems [4] and to

techniques used in main-memory database systems [7, 22].

7. CONCLUSION

The basic principle behind a log-structured file system is a simple one: collect

large amounts of new data in a file cache in main memory, then write the

data to disk in a single large 1/0 that can use all of the disk’s bandwidth.

Implementing this idea is complicated by the need to maintain large free

areas on disk, but both our simulation analysis and our experience with

Sprite LFS suggest that low cleaning overheads can be achieved with a
simple policy based on cost and benefit. Although we developed a log-struc-

tured file system to support workloads with many small files, the approach

also works very well for large-file accesses. In particular, there is essentially

no cleaning overhead at all for very large files that are created and deleted in

their entirety.

The bottom line is that a log-structured file system can use disks an order

of magnitude more efficiently than existing file systems. This should make it

possible to take advantage of several more generations of faster processors
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before 1/0 limitations once again threaten the scalability of computer

systems.
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