K. Olukotun
Spring 05/06

CS315A/EE382B: Lecture 4

Application Parallelization Il: Mapping & Data

Kunle Olukotun
Stanford University

http://eeclass.stanford.edu/cs315a

(C) 2006 Kunle Olukotun CS315A Lecture 4

The Two Sides of Parallelization

» Dividing Work: Need to chop computation into parallel tasks
— What are smallest independent units in a program?
— Achieve high processor utilization

Parallel Programmers :Must Balance These

» Partitioning Data: Localizing data onto processors
— Must map tasks to processors along with data
— Necessary on message passing machines
— Very helpful on shared-memory machines
— Minimize expensive interprocessor communication

(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

K. Olukotun Handout #6
Spring 05/06 CS315a

Review: Static Partitioning with OpenMP &
pthreads

* Do it manually with pthreads
— Choose how to pass iterations to threads

* OpenMP offers simple options for loops
— schedule(static, size) distributes size iterations/CPU
» Simple and clear

* Nesting works in some environments
— Works under Solaris 10
— Usually use entire rows/columns of multi-D arrays

» Can get stuck if you (# iterations)/(size*n_procs) not an integer
— Some “extra” processors during last batch of blocks
— This covers most common cases

(C) 2006 Kunle Olukotun CS315A Lecture 4

Review: Solution: Dynamic Partitioning

» Use real threads (pthreads) for large parallel tasks
— Examples: Entire database queries, web page lookups
— Let the underlying thread system handle scheduling
» Pthreads includes many routines to control scheduling
» Saves you a lot of work
+ Allows pre-emption of long running tasks
» Use hand-built task queues for smaller parallel tasks
— Examples: Tree nodes, blocks of pixels, etc.
— Avoids often overly general thread schedule model
— You can custom-build a queue to hold your tasks efficiently

|:> Lock |:> Running Task

(C) 2006 Kunle Olukotun CS315A Lecture 4

K. Olukotun
Spring 05/06

Review: Pipeline Parallelism

* There are two common ways to parallelize:
— Execute same task on different processors
Processor executes whole task
— Pipeline task across processors
Processor executes a piece of a task

4— Processors _>

A
time A B

A A A A A B Cc
B B B B A B C D
(o3 C C C B C D
D D D D C D

D

(C) 2006 Kunle Olukotun CS315A Lecture 4 °

Review: When to Use Pipelining

» Loop carried dependencies are the main reason:

Code & Consts

Use j(n-1) Code & Consts

Code & Consts

Produce j(n)

Code & Consts

» Can also sometimes be more natural with streaming data
— Data arrives over time
— As new data arrives, old moves on through
— Code, constants & loop carried information doesn’t move!

(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

K. Olukotun
Spring 05/06

Today’s Outline: Mapping & Data Management

Basic task mapping

— Find overall application dependency graphs

— Divide into dependent phases of tasks

— Map in time (between phases) and space (within phases)

» Mapping for Regular Applications: Array blocking techniques
— Control how we break regular structures into tasks
— Similar concepts can be applied to irregular structures
» But beyond the scope of what can be covered in-class

* Reductions: Reducing data dimensionality

» Steps to parallelize a full application!

(C) 2006 Kunle Olukotun CS315A Lecture 4

Quick Review: Tasks

» Tasks are the smallest parallel code regions in a program
— We've looked at using them, individually

* We have discussed two characteristics:
— Runtime (constant between tasks or varying?)
— Number (predictable?)
— These affect task scheduling (static/dynamic)

* Now we must look at another characteristric: Data Use
— Input-output to/from each task sets communication
— Provides opportunities for parallelism
— Affects sequencing & processor mapping

(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

K. Olukotun Handout #6
Spring 05/06 CS315a

Task Breakdown by Data |

» Data parallelism is most prevalent sort of parallelism
* Domain decompositon

— Divide data into pieces and then associate tasks with pieces
... But how?

* 1) Independent output data produced by independent tasks
— Minimizes data written from one processor to another
— Use it first, if possible

/ Task] —
/v[Task] —
< Task Je==> output
\A{ Task] C—— > Output

(C) 2006 Kunle Olukotun CS315A Lecture 4

Input(s)

Task Breakdown by Data |l

» 2) Allocating a task per input data

— Simple and straightforward to find

— Must often communicate elsewhere for output (e.g. sum, max)
» 3) Known intermediate values offer mid-program “I/O” points

— Offer a sort of “hybrid” technique

Input - Output(s)

= Intr -
[Task | L s S

e
Input(s) Intr -

(C) 2006 Kunle Olukotun CS315A Lecture 4

K. Olukotun
Spring 05/06

Task Flow Graphs

» We can represent a parallel application as a graph of tasks
— Directed, with data output(s)-to-input(s) of next task(s)
— Flows down from the program start to end

Input(s) ABC[0] ABC[1] ABC[2] ABC[3]

Yy 4y bbby

[Task][Task][Task][Task]
A[\[OJL ANl A2, ABY

Summation

Output(s) L
sum

(C) 2006 Kunle Olukotun CS315A Lecture 4

“Real” Task Graphs |

» Real applications are much more complex
— Often easier to represent some things as loops
— Often easier to group many-to-many communication
— Example 1: Physics timestep simulation

... [Task Task Task Task:| Loop

ARSI

(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

K. Olukotun
Spring 05/06

“Real” Task Graphs Il

» Example 2: Matrix-vector multiplication

|Task Graph [N-1]

Task Graph [0]
A[00] A[0,1] A[0.2] A[0,3] B[“’]
v I+ v I+ v |+ ¥
[Task][Task][Task][Task]

| S S

[Summation

'

co]]

(C) 2006 Kunle Olukotun CS315A Lecture 4

Examining a Task Graph

» Divide graph nodes into levels
— Put parallel tasks on the same level
— Put dependent (and therefore serial) tasks on different levels

* Examine each level & classify it . . .
— Can you use static scheduling on this level?
» All ~fixed-length tasks
» ~Fixed number of tasks
— Phases: should you put a barrier before/after it?
« Static, with lots of broadcast/reduce-style communication: YES
— Try to eliminate the need for locks to protect the communication
» Dynamic, or static with point-to-point communication: NO
« Static/dynamic scheduling border: PROBABLY
— Need to be very careful if you don’t, though

(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

K. Olukotun
Spring 05/06

Simple Example

» Back to the simple example again:

ABC[0] ABC[1] ABC[2] ABC[3]

Parallel Static Phase

Barrier between static regions

Serial Phase

sum

(C) 2006 Kunle Olukotun CS315A Lecture 4

More Interesting Example

» This simulation example is more irregular:
— First phase updates grid points
— Second phase works with sparse objects in the grid
» Varying amounts of work per data point

& “ & Parallel Static Phase

A Y Partial broadcast

Barrier at region border

Dynamic Phase

Partial broadcast

Barrier at region border

(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

K. Olukotun
Spring 05/06

Mapping: Grouping Tasks Together

* OK, so we've got a task dependency graph . . . now what?

* Now need to combine tasks fogether
— Should have LOTS of tasks in any parallel application
* ~10x the number of processors
+ If not, we'll probably have load balancing problems
— Need to map to a relatively small number of processors

* The main factor to consider: communication
— Communication is expensive, so let's minimize it!

(C) 2006 Kunle Olukotun CS315A Lecture 4

Mapping Through Time

* Mapping across program phases is simple

— Try to have processors depend upon themselves
* No communication, locking

— Fill in unassigned processors as necessary

— Examples:

(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

K. Olukotun
Spring 05/06

Mapping Across Space

» Dividing up the tasks within a phase is much more work

* Need to think about impact of communication at start/end
— Which processors are producing inputs?
— Where do the outputs go?
* May need to think about memory usage within phase
— To improve cache performance
— To be selective about data copying
» Type of phase affects the mapping
— Static: Try to minimize communication
— Dynamic: Must try to balance work and communication
» Grouping tasks can minimize communication among them
» But must leave enough groups to allow dynamic load balancing

19
(C) 2006 Kunle Olukotun CS315A Lecture 4

Blocking

* Blocking is applying spatial task mappings to:
— Tasks created from domain decomposition (data-level
parallelism)
— Data-level parallelism among elements of a regular array
+ Offers a good example of how to think about mapping
— lrregular data parallelism can be “blocked” too
— But all other examples are much harder to illustrate

20
(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

10

K. Olukotun
Spring 05/06

Blocking for Caches |

* Which of the following is faster in C?
— Your mileage my vary with other languages

for (i=0; i < 10000; i++) ﬁ’:
for (Jj=0; j < 10000; j++) ———
sum += a[i][]j]; —
for (j=0; j < 10000; j++)
for (i=0; i < 10000; i++) 771717
+= i1[0J1;
sum af11[3l; W/wf/w/ﬁ/ﬁ/w
(C) 2006 Kunle Olukotun CS315A Lecture 4 &

Blocking for Caches |l

* We want to exploit cache locality in serial programs
— C stores rows of data together, so . . .
— Row-major access is better in C
— Bonus: Also improves memory page locality

* We want to exploit locality in parallel programs, too

— Same advantages as serial code, plus:

— Processors have separate caches
» We want them to hold different data, not just copies
* Want to avoid communication

— Moral: Row-major is usually best in parallel C

— Extra issues
» Communication
* Load imbalance

22
(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

11

K. Olukotun
Spring 05/06

Blocking Rows Together |

* We must often allocate N rows to P processors, N >> P
— Can allocate interleaved: 1 row/processor
— Can allocate fully blocked: N/P rows/processor
— Can allocate partially blocked: 1 < rows/processor < N/P

» Must decide best blocking on a case-by-case basis
— Fully blocked usually best for pure static
» Keeps neighbors close together
— Important for lots of algorithms
— Interleaved/partially blocked best for more dynamic code
+ Distributes entire input array more evenly across processors
* Provides small chunks for dynamic scheduling

— More chunks allow better load balancing . . .
— ...Butdon’'t want to get too small due to scheduling overhead

23
(C) 2006 Kunle Olukotun CS315A Lecture 4

Blocking Rows Together Il

» Keeping neighbors together can minimize communication:
— Nearest neighbor communication: interleaved 2N rows,

blocked 2P rows

=

» Breaking rows apart can improve load balance:

G
U =

24
(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

12

K. Olukotun
Spring 05/06

Multi-Dimensional Blocking

* Many parallel algorithms work best with multi-d “grid” blocking
— P'd blocks in each dimension of a d-dimensional grid
— Reduces edge communication: (2/sqrt(P)) (rows + columns)
+ Although the communication of columns may backfire

Communication per

processor

=

Communicated Row Area (Elements)
w W oa
S a o
& & o

450

R4

R16
—R64

B4
—B16
— B64

N
a
=]

N
=3
=3

N
«
=]

Row Lines Stacked Up Here
R4, R16, R64, B4

1D vs 2D
blocking for
4-64 procs

o

&
\\

Array dimension Size R

(C) 2006 Kunle Olukotun

eg.10x 10 c

AAAAAAAAAA

Array Size (X & Y)

Blocking Matrix Multiply

» Can reduce algorithm communication:

» Output decomposition on Matrix C

« Matrix multiply: (1-1/P)N2 vs. (/sqrt(P) - 1/P)2N2

60000

50000

40000

A B C
= [m—
= =—MN .| .

R4

R16
—R64

B4
—B16
—B64

1D vs 2D
blocking for

4-64 procs

30000

ion/Processor

20000

» Each processor (P) gets same
partition of matrices A, B and C

* Green = no communication
* Blue = communication

10000

IR Rt

(C) 2006 Kunle Olukotun

CS315A Lecture 4

Handout #6
CS315a

13

K. Olukotun Handout #6
Spring 05/06 CS315a

Blocking Matrix Multiply Example

» Can reduce algorithm communication:
» Output decomposition on Matrix C
 Matrix multiply: (1-1/P)N2 vs. (1/sqrt(P) - 1/P)2N2

A B (o
60000
; o ;
X = 50000 +{ R4
R16 1D vs 2D
—R64 .
Y o000 L] B4 blocking for
% e 4-64 procs
= —y .| |
3 20000
— 16 processors o000
* 1D: (1- 1/16) N2= 15/16Nz2 © ///
+ 2D: (1/4- 1/16) 22 = 6/16N? et ey e e
Array S’;ZEH(X—‘& ;) ﬁﬁﬁﬁﬁﬁ h
(C) 2006 Kunle Olukotun CS315A Lecture 4 27

Implementing Multi-Dimensional Blocking

* So how do we do it?
— Need to “make your own” in both pthreads and OpenMP

» Code nominally uses a 4-level loop:
PARALLEL for (p_x=0; p_x < sqrt(NUM_PROCS); p_x++)
PARALLEL for (p_y=0; p_y < sqrt(NUM_PROCS); p_y++) {
/* Calculate a block on each processor */
SERIAL for (x=0; x < BLOCK WIDTH; x++)
SERIAL for (y=0; y < BLOCK HEIGHT; y++)
CalculateResult(Alp x][p y][x][y])i}
* May need to flatten the two parallel loops to a single loop:
Parallel XY loop, MxN blocks
X=XY/M;
Y =XY % M;
Serial loops as before . ..

28
(C) 2006 Kunle Olukotun CS315A Lecture 4

14

K. Olukotun Handout #6
Spring 05/06 CS315a

Blocking and Spatial Locality

» Breaking rows can decrease cache locality
— Can end up with cache lines straddling column breaks
— Also hurts with page locality, increasing TLB misses

» Make sure block size aligned with cache line

* So use 2xd-dimensional arrays
— Every dimension is broken into two subdimensions:

» Parallel processor ID number
+ Serial dimension

— Create a d-dimensional array for each block
— Effectively independent arrays for each processor

29
(C) 2006 Kunle Olukotun CS315A Lecture 4

Blocking and Spatial Locality Il

* So use 2xd-dimensional arrays

— Every dimension is broken into two subdimensions:
» Parallel processor ID number
+ Serial dimension

— Create a d-dimensional array for each block
* Original code:
— AlXIly]
» Transformed code:
— A[processor dimensions] [linear dimensions]
— A[x-proc] [y-proc] [x-1linear] [y-linear] or
A[x/BLOCK_SIZE] [y/BLOCK SIZE] [x$BLOCK SIZE] [y
$BLOCK_SIZE]

— with each processor working on one particular block

— Putting "processor number" dimensions first groups each
) 20c processor's accesses to a contiguous area of memory

15

K. Olukotun
Spring 05/06

Blocking and Load Imbalance

* Blocking can lead to load imbalance

— Amount of work per matrix element varies e.g. (LU
factorization)

» Block-cyclic distributions:

— Tasks with predictably uneven timing can be spread across
processors without dynamic allocation

— Interleave processors in “light” and “heavy” areas of data to
balance out on average

— Static “load rebalancing”

Q Work)

31
(C) 2006 Kunle Olukotun CS315A Lecture 4

Reductions

* One of the banes of parallelism is a reduction in dimensionality
— Go from N dimensions to N-1, N-2, ... 0
— Dot products are the most common example
+ ali] = afi] + b[j] x cj]

» Divide on output for target dimension > 0

» Single output, associative reduction
— Combine to P elements
» Do as much of the reduction in parallel as possible
— Do final step in serial (small P) or in a parallel tree (large P)
» Single output, non-associative reduction
— It's serial, so try to overlap parts of tasks
— Good place to apply pipeline parallelism!

32
(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

16

K. Olukotun Handout #6
Spring 05/06 CS315a

Reductions in OpenMP

* Reductions are so common that OpenMP provides support for
them

» May add reduction clause to parallel for pragma
» Specify reduction operation and reduction variable

» OpenMP takes care of storing partial results in private variables
and combining partial results after the loop

» The reduction clause has this syntax:
reduction (<op> :<variable>)

» Operators

-+ Sum

- Product

- & |, Bitwise and, or, exclusive or
- &&, || Logical and, or

33
(C) 2006 Kunle Olukotun CS315A Lecture 4

OMP Code with Reduction Clause

double area, pi, x;
int i, n;

area = 0.0;
#pragma omp parallel for \
private (x) reduction (+:area)
for (i = 0; i < n; i++) {
x = (i + 0.5)/n;
area += 4.0/(1.0 + x*x);
}

pi = area / n;

34
(C) 2006 Kunle Olukotun CS315A Lecture 4

17

K. Olukotun
Spring 05/06

Reduction Alternatives in OpenMP

* OpenMP non-associative reduction gives some choices
— Use OpenMP ordered block
» Forces all processors to do reduction step in-order
— Use OpenMP barrier + single block
*» Lets only one processor do the reduction serially
— Or just end the parallel region and do it serially

35
(C) 2006 Kunle Olukotun CS315A Lecture 4

Replication of Work

+ Sometimes it’s better to add tasks than to communicate
— A small “global” value generation
* Reduction results then used by many processors
— Need to carefully consider if cost of extra work is worth it
* Replicated work doesn’t help you speed up!
* Must be worth the communication savings!

[i][1ok] [1ok][Fash] [Task][Task] [Task][Task]

Collect

A A A

Broadcast

Reduce

A A A

[Reduc[Reduce[Reduc{ Red:me] Local
[Task |[Task | [Task |[Task | [Task |[Task | [Task || Task | outputs

Broadcast

36
(C) 2006 Kunle Olukotun CS315A Lecture 4

Handout #6
CS315a

18

K. Olukotun Handout #6
Spring 05/06 CS315a

Summary & A Look Ahead

* We went through the process of parallelizing an application:
Identify possible parallel tasks
Break down tasks and find dependence graph
Find phases in dependence graph and classify them
Map tasks to processors

* Intime (simple)

* In space (more complex, may need to block data)

* Will next look at measuring and evaluating performance!
— Some common parallel programming issues
— The many definitions of “speedup” in parallel systems
— Analyzing scalability of applications

37
(C) 2006 Kunle Olukotun CS315A Lecture 4

19

