
K. Olukotun
Spring 05/06

Handout #6
CS315a

1

CS315A Lecture 4(C) 2006 Kunle Olukotun 1

CS315A/EE382B: Lecture 4

Application Parallelization II: Mapping & Data

Kunle Olukotun
Stanford University

http://eeclass.stanford.edu/cs315a

CS315A Lecture 4(C) 2006 Kunle Olukotun 2

The Two Sides of Parallelization

• Dividing Work: Need to chop computation into parallel tasks
– What are smallest independent units in a program?
– Achieve high processor utilization

• Partitioning Data: Localizing data onto processors
– Must map tasks to processors along with data
– Necessary on message passing machines
– Very helpful on shared-memory machines
– Minimize expensive interprocessor communication

Parallel Programmers Must Balance These

K. Olukotun
Spring 05/06

Handout #6
CS315a

2

CS315A Lecture 4(C) 2006 Kunle Olukotun 3

Review: Static Partitioning with OpenMP &
pthreads

• Do it manually with pthreads
– Choose how to pass iterations to threads

• OpenMP offers simple options for loops
– schedule(static, size) distributes size iterations/CPU

• Simple and clear
• Nesting works in some environments

– Works under Solaris 10
– Usually use entire rows/columns of multi-D arrays

• Can get stuck if you (# iterations)/(size•n_procs) not an integer
– Some “extra” processors during last batch of blocks

– This covers most common cases

CS315A Lecture 4(C) 2006 Kunle Olukotun 4

Review: Solution: Dynamic Partitioning

• Use real threads (pthreads) for large parallel tasks
– Examples: Entire database queries, web page lookups
– Let the underlying thread system handle scheduling

• Pthreads includes many routines to control scheduling
• Saves you a lot of work
• Allows pre-emption of long running tasks

• Use hand-built task queues for smaller parallel tasks
– Examples: Tree nodes, blocks of pixels, etc.
– Avoids often overly general thread schedule model
– You can custom-build a queue to hold your tasks efficiently

LockNew Task Running TaskLock

K. Olukotun
Spring 05/06

Handout #6
CS315a

3

CS315A Lecture 4(C) 2006 Kunle Olukotun 5

Review: Pipeline Parallelism

• There are two common ways to parallelize:
– Execute same task on different processors

• Processor executes whole task
– Pipeline task across processors

• Processor executes a piece of a task

Processors

time
A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

A

A

A

B

B

B

B

C

C

C

C

D

D

D

D

CS315A Lecture 4(C) 2006 Kunle Olukotun 6

Review: When to Use Pipelining

• Loop carried dependencies are the main reason:

• Can also sometimes be more natural with streaming data
– Data arrives over time
– As new data arrives, old moves on through
– Code, constants & loop carried information doesn’t move!

Use j(n-1)

Produce j(n)

Code & Consts

Code & Consts

Code & Consts

Code & Consts

Data

Data

Data

Data

K. Olukotun
Spring 05/06

Handout #6
CS315a

4

CS315A Lecture 4(C) 2006 Kunle Olukotun 7

Today’s Outline: Mapping & Data Management

• Basic task mapping
– Find overall application dependency graphs
– Divide into dependent phases of tasks
– Map in time (between phases) and space (within phases)

• Mapping for Regular Applications: Array blocking techniques
– Control how we break regular structures into tasks
– Similar concepts can be applied to irregular structures

• But beyond the scope of what can be covered in-class

• Reductions: Reducing data dimensionality

• Steps to parallelize a full application!

CS315A Lecture 4(C) 2006 Kunle Olukotun 8

Quick Review: Tasks

• Tasks are the smallest parallel code regions in a program
– We’ve looked at using them, individually

• We have discussed two characteristics:
– Runtime (constant between tasks or varying?)
– Number (predictable?)
– These affect task scheduling (static/dynamic)

• Now we must look at another characteristric: Data Use
– Input-output to/from each task sets communication
– Provides opportunities for parallelism
– Affects sequencing & processor mapping

K. Olukotun
Spring 05/06

Handout #6
CS315a

5

CS315A Lecture 4(C) 2006 Kunle Olukotun 9

Task Breakdown by Data I

• Data parallelism is most prevalent sort of parallelism
• Domain decompositon

– Divide data into pieces and then associate tasks with pieces
. . . But how?

• 1) Independent output data produced by independent tasks
– Minimizes data written from one processor to another
– Use it first, if possible

OutputTask

OutputTask

OutputTask

OutputTask

Input(s)

CS315A Lecture 4(C) 2006 Kunle Olukotun 10

Task Breakdown by Data II

• 2) Allocating a task per input data
– Simple and straightforward to find
– Must often communicate elsewhere for output (e.g. sum, max)

• 3) Known intermediate values offer mid-program “I/O” points
– Offer a sort of “hybrid” technique

Task

Task

Task

Output(s)Task

Input

Input

Input

Input Task

Task

Task

Output(s)

Task

Input(s)

Task

Task

Task

Task Intr

Intr

Intr

Intr

K. Olukotun
Spring 05/06

Handout #6
CS315a

6

CS315A Lecture 4(C) 2006 Kunle Olukotun 11

Task Flow Graphs

• We can represent a parallel application as a graph of tasks
– Directed, with data output(s)-to-input(s) of next task(s)
– Flows down from the program start to end

Task

Output(s)

Input(s)

Summation

Task TaskTask Task

ABC[0] ABC[1] ABC[2] ABC[3]

A[0] A[1] A[2] A[3]

sum

CS315A Lecture 4(C) 2006 Kunle Olukotun 12

“Real” Task Graphs I

• Real applications are much more complex
– Often easier to represent some things as loops
– Often easier to group many-to-many communication
– Example 1: Physics timestep simulation

Task TaskTask Task Loop.

K. Olukotun
Spring 05/06

Handout #6
CS315a

7

CS315A Lecture 4(C) 2006 Kunle Olukotun 13

“Real” Task Graphs II

• Example 2: Matrix-vector multiplication

Summation

Task TaskTask Task

A[0,0] A[0,1] A[0,2] A[0,3]

C[0]

. . . .

B[0]
Task Graph [0]

. . . .

Task Graph [N-1]

CS315A Lecture 4(C) 2006 Kunle Olukotun 14

Examining a Task Graph

• Divide graph nodes into levels
– Put parallel tasks on the same level
– Put dependent (and therefore serial) tasks on different levels

• Examine each level & classify it . . .
– Can you use static scheduling on this level?

• All ~fixed-length tasks
• ~Fixed number of tasks

– Phases: should you put a barrier before/after it?
• Static, with lots of broadcast/reduce-style communication: YES

– Try to eliminate the need for locks to protect the communication
• Dynamic, or static with point-to-point communication: NO
• Static/dynamic scheduling border: PROBABLY

– Need to be very careful if you don’t, though

K. Olukotun
Spring 05/06

Handout #6
CS315a

8

CS315A Lecture 4(C) 2006 Kunle Olukotun 15

Simple Example

• Back to the simple example again:

Summation

Task TaskTask Task

ABC[0] ABC[1] ABC[2] ABC[3]

A[0] A[1] A[2] A[3]

sum

Barrier between static regions

Parallel Static Phase

Serial Phase

CS315A Lecture 4(C) 2006 Kunle Olukotun 16

More Interesting Example

• This simulation example is more irregular:
– First phase updates grid points
– Second phase works with sparse objects in the grid

• Varying amounts of work per data point

Task TaskTask Task

Barrier at region border

Parallel Static Phase

Dynamic Phase

Partial broadcast

Task TaskTask Task

Partial broadcast
Barrier at region border

Loop

K. Olukotun
Spring 05/06

Handout #6
CS315a

9

CS315A Lecture 4(C) 2006 Kunle Olukotun 17

Mapping: Grouping Tasks Together

• OK, so we’ve got a task dependency graph . . . now what?

• Now need to combine tasks together
– Should have LOTS of tasks in any parallel application

• ~10x the number of processors
• If not, we’ll probably have load balancing problems

– Need to map to a relatively small number of processors

• The main factor to consider: communication
– Communication is expensive, so let’s minimize it!

CS315A Lecture 4(C) 2006 Kunle Olukotun 18

Mapping Through Time

• Mapping across program phases is simple
– Try to have processors depend upon themselves

• No communication, locking
– Fill in unassigned processors as necessary
– Examples:

Big Task

Task TaskTask Task

Task TaskTask Task
Big Task

Task TaskTask Task

Big Task

K. Olukotun
Spring 05/06

Handout #6
CS315a

10

CS315A Lecture 4(C) 2006 Kunle Olukotun 19

Mapping Across Space

• Dividing up the tasks within a phase is much more work

• Need to think about impact of communication at start/end
– Which processors are producing inputs?
– Where do the outputs go?

• May need to think about memory usage within phase
– To improve cache performance
– To be selective about data copying

• Type of phase affects the mapping
– Static: Try to minimize communication
– Dynamic: Must try to balance work and communication

• Grouping tasks can minimize communication among them
• But must leave enough groups to allow dynamic load balancing

CS315A Lecture 4(C) 2006 Kunle Olukotun 20

Blocking

• Blocking is applying spatial task mappings to:
– Tasks created from domain decomposition (data-level

parallelism)
– Data-level parallelism among elements of a regular array

• Offers a good example of how to think about mapping
– Irregular data parallelism can be “blocked” too
– But all other examples are much harder to illustrate

K. Olukotun
Spring 05/06

Handout #6
CS315a

11

CS315A Lecture 4(C) 2006 Kunle Olukotun 21

Blocking for Caches I

• Which of the following is faster in C?
– Your mileage my vary with other languages

for (i=0; i < 10000; i++)
for (j=0; j < 10000; j++)
sum += a[i][j];

for (j=0; j < 10000; j++)
for (i=0; i < 10000; i++)
sum += a[i][j];

CS315A Lecture 4(C) 2006 Kunle Olukotun 22

Blocking for Caches II

• We want to exploit cache locality in serial programs
– C stores rows of data together, so . . .
– Row-major access is better in C
– Bonus: Also improves memory page locality

• We want to exploit locality in parallel programs, too
– Same advantages as serial code, plus:
– Processors have separate caches

• We want them to hold different data, not just copies
• Want to avoid communication

– Moral: Row-major is usually best in parallel C
– Extra issues

• Communication
• Load imbalance

K. Olukotun
Spring 05/06

Handout #6
CS315a

12

CS315A Lecture 4(C) 2006 Kunle Olukotun 23

Blocking Rows Together I

• We must often allocate N rows to P processors, N >> P
– Can allocate interleaved: 1 row/processor
– Can allocate fully blocked: N/P rows/processor
– Can allocate partially blocked: 1 < rows/processor < N/P

• Must decide best blocking on a case-by-case basis
– Fully blocked usually best for pure static

• Keeps neighbors close together
– Important for lots of algorithms

– Interleaved/partially blocked best for more dynamic code
• Distributes entire input array more evenly across processors
• Provides small chunks for dynamic scheduling

– More chunks allow better load balancing . . .
– . . . But don’t want to get too small due to scheduling overhead

CS315A Lecture 4(C) 2006 Kunle Olukotun 24

Blocking Rows Together II

• Keeping neighbors together can minimize communication:
– Nearest neighbor communication: interleaved 2N rows,

blocked 2P rows

• Breaking rows apart can improve load balance:

WorkWork

K. Olukotun
Spring 05/06

Handout #6
CS315a

13

CS315A Lecture 4(C) 2006 Kunle Olukotun 25

Multi-Dimensional Blocking

• Many parallel algorithms work best with multi-d “grid” blocking
– P1/d blocks in each dimension of a d-dimensional grid
– Reduces edge communication: (2/sqrt(P)) (rows + columns)

• Although the communication of columns may backfire

1D vs 2D
blocking for
4–64 procs

Row Lines Stacked Up Here

R4, R16, R64, B4

Array dimension size

e.g. 10 x 10

Communication per

processor

CS315A Lecture 4(C) 2006 Kunle Olukotun 26

Blocking Matrix Multiply

• Can reduce algorithm communication:
• Output decomposition on Matrix C
• Matrix multiply: (1-1/P)N2 vs. (/sqrt(P) - 1/P)2N2

A B C

X =

X =

0

10000

20000

30000

40000

50000

60000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

Array Size (X & Y)

C
o

m
m

u
n

ic
a
ti

o
n

/
P

r
o

c
e
s
s
o

r
 (

E
le

m
e
n

ts
)

R4

R16

R64

B4

B16

B64

1D vs 2D
blocking for
4–64 procs

• Each processor (P) gets same
partition of matrices A, B and C

• Green = no communication
• Blue = communication

K. Olukotun
Spring 05/06

Handout #6
CS315a

14

CS315A Lecture 4(C) 2006 Kunle Olukotun 27

Blocking Matrix Multiply Example

• Can reduce algorithm communication:
• Output decomposition on Matrix C
• Matrix multiply: (1-1/P)N2 vs. (1/sqrt(P) - 1/P)2N2

A B C

X =

X =

0

10000

20000

30000

40000

50000

60000

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

Array Size (X & Y)

C
o

m
m

u
n

ic
a
ti

o
n

/
P

r
o

c
e
s
s
o

r
 (

E
le

m
e
n

ts
)

R4

R16

R64

B4

B16

B64

1D vs 2D
blocking for
4–64 procs

– 16 processors
• 1D: (1- 1/16) N2 = 15/16N2

• 2D: (1/4 - 1/16) 2 N2 = 6/16N2

CS315A Lecture 4(C) 2006 Kunle Olukotun 28

Implementing Multi-Dimensional Blocking

• So how do we do it?
– Need to “make your own” in both pthreads and OpenMP

• Code nominally uses a 4-level loop:
PARALLEL for (p_x=0; p_x < sqrt(NUM_PROCS); p_x++)

PARALLEL for (p_y=0; p_y < sqrt(NUM_PROCS); p_y++){

/* Calculate a block on each processor */

SERIAL for (x=0; x < BLOCK_WIDTH; x++)

SERIAL for (y=0; y < BLOCK_HEIGHT; y++)

CalculateResult(A[p_x][p_y][x][y]);}

• May need to flatten the two parallel loops to a single loop:
Parallel XY loop, MxN blocks

X = XY / M;
Y = XY % M;
Serial loops as before . . .

K. Olukotun
Spring 05/06

Handout #6
CS315a

15

CS315A Lecture 4(C) 2006 Kunle Olukotun 29

Blocking and Spatial Locality

• Breaking rows can decrease cache locality
– Can end up with cache lines straddling column breaks
– Also hurts with page locality, increasing TLB misses

• Make sure block size aligned with cache line
• So use 2xd-dimensional arrays

– Every dimension is broken into two subdimensions:
• Parallel processor ID number
• Serial dimension

– Create a d-dimensional array for each block
– Effectively independent arrays for each processor

CS315A Lecture 4(C) 2006 Kunle Olukotun 30

Blocking and Spatial Locality II

• So use 2xd-dimensional arrays
– Every dimension is broken into two subdimensions:

• Parallel processor ID number
• Serial dimension

– Create a d-dimensional array for each block
• Original code:

– A[x][y]
• Transformed code:

– A[processor dimensions][linear dimensions]
– A[x-proc][y-proc][x-linear][y-linear] or
. . .
A[x/BLOCK_SIZE][y/BLOCK_SIZE][x%BLOCK_SIZE][y
%BLOCK_SIZE]

– with each processor working on one particular block
– Putting "processor number" dimensions first groups each

processor's accesses to a contiguous area of memory

K. Olukotun
Spring 05/06

Handout #6
CS315a

16

CS315A Lecture 4(C) 2006 Kunle Olukotun 31

Blocking and Load Imbalance

• Blocking can lead to load imbalance
– Amount of work per matrix element varies e.g. (LU

factorization)
• Block-cyclic distributions:

– Tasks with predictably uneven timing can be spread across
processors without dynamic allocation

– Interleave processors in “light” and “heavy” areas of data to
balance out on average

– Static “load rebalancing”

Work

CS315A Lecture 4(C) 2006 Kunle Olukotun 32

Reductions

• One of the banes of parallelism is a reduction in dimensionality
– Go from N dimensions to N-1, N-2, . . . 0
– Dot products are the most common example

• a[i] = a[i] + b[j] x c[j]

• Divide on output for target dimension > 0

• Single output, associative reduction
– Combine to P elements

• Do as much of the reduction in parallel as possible
– Do final step in serial (small P) or in a parallel tree (large P)

• Single output, non-associative reduction
– It’s serial, so try to overlap parts of tasks
– Good place to apply pipeline parallelism!

K. Olukotun
Spring 05/06

Handout #6
CS315a

17

CS315A Lecture 4(C) 2006 Kunle Olukotun 33

Reductions in OpenMP

• Reductions are so common that OpenMP provides support for
them

• May add reduction clause to parallel for pragma
• Specify reduction operation and reduction variable
• OpenMP takes care of storing partial results in private variables

and combining partial results after the loop
• The reduction clause has this syntax:

reduction (<op> :<variable>)
• Operators

– + Sum
– * Product
– &, |, ^ Bitwise and, or , exclusive or
– &&, || Logical and, or

CS315A Lecture 4(C) 2006 Kunle Olukotun 34

double area, pi, x;
int i, n;
...
area = 0.0;
#pragma omp parallel for \
 private(x) reduction(+:area)
for (i = 0; i < n; i++) {
 x = (i + 0.5)/n;
 area += 4.0/(1.0 + x*x);
}
pi = area / n;

OMP Code with Reduction Clause

K. Olukotun
Spring 05/06

Handout #6
CS315a

18

CS315A Lecture 4(C) 2006 Kunle Olukotun 35

Reduction Alternatives in OpenMP

• OpenMP non-associative reduction gives some choices
– Use OpenMP ordered block

• Forces all processors to do reduction step in-order
– Use OpenMP barrier + single block

• Lets only one processor do the reduction serially
– Or just end the parallel region and do it serially

CS315A Lecture 4(C) 2006 Kunle Olukotun 36

Replication of Work

• Sometimes it’s better to add tasks than to communicate
– A small “global” value generation

• Reduction results then used by many processors
– Need to carefully consider if cost of extra work is worth it

• Replicated work doesn’t help you speed up!
• Must be worth the communication savings!

Task Task Task Task

Reduce

Task Task Task Task

Task Task Task Task

Task Task Task Task

Reduce Reduce Reduce Reduce

Collect

Broadcast

Broadcast

Local
Outputs

K. Olukotun
Spring 05/06

Handout #6
CS315a

19

CS315A Lecture 4(C) 2006 Kunle Olukotun 37

Summary & A Look Ahead

• We went through the process of parallelizing an application:
– Identify possible parallel tasks
– Break down tasks and find dependence graph
– Find phases in dependence graph and classify them
– Map tasks to processors

• In time (simple)
• In space (more complex, may need to block data)

• Will next look at measuring and evaluating performance!
– Some common parallel programming issues
– The many definitions of “speedup” in parallel systems
– Analyzing scalability of applications

