
P. Wegner 
Education Editor 

Program 
Development by 
Stepwise 
Refinement 
Niklaus Wirth 
EidgeniSssische Technische Hochschule 
Ziirich, Switzerland 

The creative activity of programming--to be distinguished 
from coding--is usually taught by examples serving to 
exhibit certain techniques. It is here considered as a 
sequence of design decisions concerning the 
decomposition of tasks into subtasks and of data into 
data structures. The process of successive refinement of 
specifications is illustrated by a short but nontrivial 
example, from which a number of conclusions are drawn 
regarding the art and the instruction of programming. 

Key Words and Phrases: education in programming, 
programming techniques, stepwise program construction 

CR Categories: 1.50, 4.0 

1. Introduction 

Programming is usually taught by examples. Experi- 
ence shows that the success of a programming course 
critically depends on the choice of these examples. Un- 
fortunately, they are too often selected with the prime 
intent to demonstrate what a computer can do. Instead, 
a main criterion for selection should be their suitability 
to exhibit certain widely applicable techniques. Further- 
more, examples of programs are commonly presented as 
finished "products" followed by explanations of their 
purpose and their linguistic details. But active program- 
ming consists of the design of new programs, rather than 
contemplation of old programs. As a consequence of 
these teaching methods, the student obtains the impres- 
sion that programming consists mainly of mastering a 
language (with all the peculiarities and intricacies so 
abundant in modern PL's) and relying on one's intuition 
to somehow transform ideas into finished programs. 
Clearly, programming courses should teach methods of 
design and construction, and the selected examples 
should be such that a gradual development can be nicely 
demonstrated. 

This paper deals with a single example chosen with 

these two purposes in mind. Some well-known tech- 
niques are briefly demonstrated and motivated (strategy 
of preselection, stepwise construction of trial solutions, 
introduction of auxiliary data, recursion), and the pro- 
gram is gradually developed in a sequence of refinement 
steps. 

In each step, one or several instructions of the given 
program are decomposed into more detailed instruc- 
tions. This successive decomposition or refinement of 
specifications terminates when all instructions are ex- 
pressed in terms of an underlying computer or program- 
ming language, and must therefore be guided by the 
facilities available on that computer or language. The re- 
sult of the execution of a program is expressed in terms 
of data, and it may be necessary to introduce further 
data for communication between the obtained subtasks 
or instructions. As tasks are refined, so the data may 
have to be refined, decomposed, or structured, and it is 
natural to refine program and data specifications in 
parallel. 

Every refinement step implies some design decisions. 
It is important that these decision be made explicit, and 
that the programmer be aware of the underlying criteria 
and of the existence of alternative solutions. The pos- 
sible solutions to a given problem emerge as the leaves of 
a tree, each node representing a point of deliberation 
and decision. Subtrees may be considered as families of 
solutions with certain common characteristics and struc- 
tures. The notion of such a tree may be particularly 
helpful in the situation of changing purpose and environ- 
ment to which a program may sometime have to be 
adapted. 

A guideline in the process of stepwise refinement 
should be the principle to decompose decisions as much 
as possible, to untangle aspects which are only seemingly 
interdependent, and to def?r those decisions which con- 
cern details of representation as long as possible. This 

221 Communications April 1971 
of Volume 14 
the ACM Number 4 



will result in programs which are easier to adapt to dif- 
ferent environments (languages and computers),  where 
different representations may be required. 

The chosen sample problem is formulated at the be- 
ginning of  section 3. The reader is strongly urged to try 
to find a solution by himself before embarking on the 
paper which- -of  course--presents only one of many 
possible solutions. 

2. Notat ion  

For the description of programs, a slightly augmen- 
ted Algol 60 notation will be used. In order to express 
repetition of statements in a more lucid way than by use 
of labels and jumps, a statement of  the form 

repeat (statement sequence} 
until (Boolean expression} 

is introduced, meaning that the statement sequence is to 
be repeated until the Boolean expression has obtained 
the value true. 

3. The 8-Queens  Problem and an Approach to Its  
Solution 1 

Given are an 8 X 8 chessboard and 8 queens which are hostile 
to each other. Find a position for each queen (a configuration) such 
that no queen may be taken by any other queen (i.e. such that every 
row, column, and diagonal contains at most one queen). 

This problem is characteristic for the rather frequent 
situation where an analytical solution is not known, 
and where one has to resort to the method of trial and 
error. Typically, there exists a set A of candidates for 
solutions, among which one is to be selected which 
satisfies a certain condition p. Thus a solution is char- 
acterized as an x such that (x E A) ^ p(x). 

A straightforward program to find a solution is: 

repeat Generate the next element of A and call it x 
until p(x) V (no more elements in A); 
ifp(x) then x = solution 

The difficulty with this sort of problem usually is the 
sheer size of A, which forbids an exhaustive generation 
of candidates on the grounds of efficiency considera- 
tions. In the present example, A consists of 
64!/(56! × 8!) -+- 232 elements (board configura- 
tions). Under the assumption that generation and 
test of each configuration consumes 100 tzs, it 
would roughly take 7 hours  to find a solution. It is 
obviously necessary to invent a "shortcut ,"  a method 
which eliminates a large number of "obviously" dis- 
qualified contenders. This strategy of preselection is 
characterized as follows: Find a representation 
of p in the form p = q A r. Then let B, = 
{x{ (x C A) A r(x)}. Obviously Br c A. Instead of 
generating elements of A, only elements of B are pro- 
duced and tested on condition q instead of p. Suitable 

1 This problem was investigated by C. F. Gauss in 1850. 

222 

candidates for a condition r are those which satisfy 
the following requirements: 

1. Br is much smaller than A. 
2. Elements of B~ are easily generated. 
3. Condition q is easier to test than condition p. 

The corresponding program then is: 

repeat Generate the next element of B and call it x 
until q(x) V (no more elements in B); 
if q(x) then x = solution 

A suitable condition r in the 8-queens problem is the 
rule that in every column of the board there must be 
exactly one queen. Condition q then merely specifies 
that there be at most one queen in every row and in 
every diagonal, which is evidently somewhat easier 
to test than p. The set Br (configurations with one queen 
in every column) contains "only"  88 = 224 elements. 
They are generated by restricting the movement of 
queens to columns. Thus all of the above conditions 
are satisfied. 

Assuming again a time of  100 us for the generation 
and test of a potential solution, finding a solution 
would now consume only 100 seconds. Having a power- 
ful computer  at one's disposal, one might easily be 
content with this gain in performance. If  one is less 
fortunate and is forced to, say, solve the problem by 
hand, it would take 280 hours of generating and testing 
configurations at the rate of one per second. In this 
case it might pay to spend some time finding further 
shortcuts. Instead of applying the same method as 
before, another one is advocated here which is char- 
acterized as follows: Find a representation of trial 
solutions x of the form [xt ,  x~, . . .  , x,], such that 
every trial solution can be generated in steps which 
produce [xl], [xl ,  x2], . . .  , [xl ,  x2, . - -  , x,] respec- 
tively. The decomposition must be such that: 

1. Every step (generating xi) must be considerably 
simpler to compute than the entire candidate x. 

2. q(x) D q ( x l . . ,  xj) for a l l j  _< n. 

Thus a full solution can never be obtained by extend- 
ing a partial trial solution which does not satisfy 
the predicate q. O n  the other hand, however, a partial 
trial solution satisfying q may not  be extensible into a 
complete solution. This method of stepwise construe- 
tion of trial solutions therefore requires that trial solu- 
tions failing at step j may have to be "shortened" 
again in order to try different extensions. This technique 
is called backtracking and may generally be character- 
ized by the program: 

j : = l ;  
relmat trystep j; 

if successful then advance else regress 
until U < 1) V U > n) 

In the 8-queens example, a solution can be con- 
structed by positioning queens in successive columns 
starting with column 1 and adding a queen in the next 
column in each step. Obviously, a partial configuration 
not satisfying the mutual nonaggression condition may 



never be extended by this method into a full solution. 
Also, since during the j th  step on ly j  queens have to be 
considered and tested for mutual nonaggression, finding 
a partial solution at s t ep j  requires less effort of  inspec- 
tion than finding a complete solution under the condi- 
tion that all 8 queens are on the board all the time. Both 
stated criteria are therefore satisfied by the decomposi- 
tion in which s t ep j  consists of  finding a safe position for 
the queen in t he j th  column. 

The program subsequently to be developed is based 
on this method; it generates and tests 876 partial con- 
figurations before finding a complete solution. Assuming 
again that each generation and test (which is now more 
easily accomplished than before) consumes one second, 
the solution is found in 15 minutes, and with the com- 
puter taking 100 ~s per step, in 0.09 seconds. 

4. Development of the Program 

We now formulate the stepwise generation of  partial 
solutions to the 8-queens problem by the following first 
version of  a program: 

variable board, pointer, saJe; 
considerfirstcolumn; 
repeat tryeolumn; 

if safe then 
begin setqueen; eonsidernexteohlmn 
end else regress 

until lasteoldone V regressoutoffirsteol 

This program is composed of  a set of more primitive in- 
structions (or procedures) whose actions may be de- 
scribed as follows: 

eonsiderfirsteolumn. The problem essentially consists of inspect- 
ing the safety of squares. A pointer variable designates the currently 
inspected square. The column in which this square lies is called the 
currently inspected column. This procedure initializes the pointer to 
denote the first column. 

tryeolumn. Starting at the current square of inspection in the 
currently considered column, move down the column either until a 
safe square is found, in which case the Boolean variable safe is set 
to true, or until the last square is reached and is also unsafe, in 
which case the variable safe is set to false. 

setqueen. A queen is positioned onto the last inspected square. 
eonsidernextcolumn. Advance to the next column and initialize 

its pointer of inspection. 
regress. Regress to a column where it is possible to move the 

positioned queen further down, and remove the queens positioned 
in the columns over which regression takes place. (Note that we 
may have to regress over at most two columns. Why?) 

The next step of  program development was chosen to 
refine the descriptions of  the instructions trycolumn and 
regress as follows: 

procedure tryeolumn; 
repeat advancepointer; testsquare 
until saJb V lastsquare 

procedure regress; 
begin reconsiderpriorcolumn 

if - regressoutoffirstcol then 
begin removequeen; 

if lastsquare then 

223 

begin reconsiderpriorcolumn; 
if ~ regressoutoffirstcol then 

removequeen 
end 

end 
end 

The program is expressed in terms of the instructions: 

considerfirstcolumn 
considernextcolumn 
reconsiderpriorcolumn 
advancepointer 
testsquare (sets the variable safe) 
setqueen 
removequeen 

and of  the predicates: 

lastsquare 
lasteoldone 
re gressoutoffirsteol 

In order to refine these instructions and predicates fur- 
ther in the direction of  instructions and predicates avail- 
able in common programming languages, it becomes 
necessary to express them in terms of data representable 
in those languages. A decision on how to represent the 
relevant facts in terms of  data can therefore no longer be 
postponed. First priority in decision making is given to 
the problem of  how to represent the positions of the 
queens and of the square being currently inspected. 

The most straightforward solution (i.e. the one most 
closely reflecting a wooden chessboard occupied by mar- 
ble pieces) is to introduce a Boolean square matrix with 
B [i, j] = true denoting that square (i, j )  is occupied. The 
success of  an algorithm, however, depends almost al- 
ways on a suitable choice of  its data representation in 
the light of  the ease in which this representation allows 
the necessary operations to be expressed. Apart  from 
this, consideration regarding storage requirements may 
be of prime importance (although hardly in this case). 
A common difficulty in program design lies in the unfor- 
tunate fact that at the stage where decisions about  data 
representations have to be made, it often is still difficult 
to foresee the details of the necessary instructions oper- 
ating on the data, and often quite impossible to estimate 
the advantages of  one possible representation over 
another. In general, it is therefore advisable to delay de- 
cisions about data representation as long as possible 
(but not until it becomes obvious that no realizable so- 
lution will suit the chosen algorithm). 

In the problem presented here, it is fairly evident 
even at this stage that the following choice is more 
suitable than a Boolean matrix in terms of simplicity 
of  later instructions as well as of storage economy. 

j is the index of the currently inspected column; 
( x j ,  j )  is the coordinate of the last inspected square; 
and the position of the queen in column k < j is given 
by the coordinate pair (Xk, k) of the board. Now the 
variable declarations for pointer and board are refined 
into: 

integerj (0 < j _< 9) 
integer array x[1:8] (0 < x~ < 8) 

Communications April 1971 
of Volume 14 

. . . . .  ~ v _ _ - - L - - -  A 



and the further refinements of  some of the above instruc- 
tions and predicates are expressed as: 

procedure considerfirstcolumn ; 
begin j : =  1; x [ 1 ] : =  0 e n d  

procedure considernextcolumn; 

b e g i n - - j  : = j - I - t ;  x[j] : =  0 e n d  

procedure reconsidetTriorcolumn; j : = j -  1 

procedure advancepointer; 
x[ j ]  : =  x[j] + 1 

Boolean procedure lastsquare; 
lastsquare : -  x[j] - 8 

Boolean procedure tastcoldotw; 
lastcoMone : =  j > 8 

Boolean procedure regressoutoffirsteol; 
regressoutoffirstcol : -  j < 1 

At this stage, the program is expressed in terms of the 
instructions: 

testsquare 
setqueen 
removequeen 

As a matter of fact, the instructions setqueen and 
removequeen may be regarded as vacuous, if we decide 
that the procedure testsquare is to determine the 
value of the variable safe solely on the grounds of the 
values xl  . - .  x~_1 which completely represent the po- 
sitions of the j - 1 queens so far on the board. But 
unfortunately the instruction testsquare is the one 
most frequently executed, and it is therefore the one 
instruction where considerations of efficiency are not  
only justified but  essential for a good solution of the 
problem. Evidently a version of testsquare expressed 
only in terms of xl . . .  xj_l is inefficient at best. It 
should be obvious that testsquare is executed far more 
often than setqueen and removequeen. The latter pro- 
cedures are executed whenever the column (j) is changed 
(say m times), the former whenever a move to the next 
square is undertaken (i.e. x~ is changed, say n times). 
Itowever, setqueen and removequeen are the only 
procedures which affect the chessboard. Efficiency 
may therefore be gained by the method of introducing 
auxiliary variables V ( x l . . .  xj) such that: 

1. Whether a square is safe can be computed more 
easily from V(x) than from x directly (say in u 
units of computation instead of ku units of com- 
putation). 

2. The computation of V(x) from x (whenever x 
changes) is not too complicated (say of v units of 
computation).  

The introduction of V is advantageous (apart from 
considerations of storage economy), if 

n v 
n(k  - 1)u > mu or  - -  ( k - -  1) > - ,  

m u 

i.e. if the gain is greater than the loss in computation 
units. 

A most straightforward solution to obtain a simple 
version of testsquare is to introduce a Boolean matrix 
B such that B[i, j] = true signifies that square (i, j )  

224 

is not  taken by another queen. But unfortunately, its 
recomputation whenever a new queen is removed (v) 
is prohibitive (why?) and will more than outweigh 
the gain. 

The realization that the relevant condition for safety 
of a square is that the square must lie neither in a 
row nor in a diagonal already occupied by another 
queen, leads to a much more economic choice of V. 
We introduce Boolean arrays a, b, c with the meanings: 

ak = true : no queen is positioned in row k 
bk = true : no queen is positioned in t he / -d i agona l  k 
ck = true : no queen is positioned in the \-diagonal k 

The choice of the index ranges of these arrays is made 
in view of the fact that squares with equal sum of  
their coordinates lie on the same /-diagonal,  and 
those with equal difference lie on the same \-diagonal.  
With row and column indices from 1 to 8, we obtain: 

Boolean array a l l  :8],  b[2:161,  c [ - - 7 : 7 1  

Upon every introduction of auxiliary data, care has 
to be taken of their correct initialization. Since our 
algorithm starts with an empty chessboard, this fact 
must be represented by initially assigning the value 
true to all components  of the arrays a, b, and c. We 
can now write: 

procedure testsquare; 
safe : =  a[x[j]] /~ b[j+x[j]] /~ c[ j - x [ j ] ]  

procedure setqueen; 
a[x[j]] : =  b[]+x[j]] : =  x [ j - x [ j ] ]  : =  false 

procedure removequeen; 
a[x[j]] : =  blj+x[j]]  : =  c[ j -x[]]]  : =  true 

The correctness of  the latter procedure is based on the 
fact that each queen currently on the board had been 
positioned on a safe square, and that all queens posi- 
tioned after the one to be removed now had already 
been removed. Thus the square to be vacated be- 
comes safe again. 

A critical examination of the program obtained so 
far reveals that the variable x[j] occurs very often, and 



in particular at those places of  the program which are 
also executed most often. Moreover,  examination of 
x[j]  occurs much more frequently than reassignment of 
values to j. As a consequence, the principle of introduc- 
tion of auxiliary data can again be applied to increase 
efficiency: a new variable 

integer i 

is used to represent the value so far denoted by x[j]. 
Consequently x[j] : = i must always be executed before 
j is increased, and i : = x[j] after j is decreased. This 
final step of program development leads to the re- 
formulation of some of the above procedures as follows: 

procedure testsquare ; 
safie := a[i] A b[i+j] A c[i--]] 

procedure setqueen; 
a[i] := b[i+j] := eli--j]:= false 

procedure removequeen; 
a[i] := b[i÷j] := c[i-j] := true 

procedure considerflrstcoh~mn ; 
begin j : =  1; i :=  0end 

procedure advancepointer; i := i+l  
procedure considernextcolumt G 

beginx[j] := i; j : = j + l ;  i :=  0 e n d  
Boolean procedure lastsquare; 

tastsquare := i = 8 

The final program, using the procedures 

testsquare 
se/queen 
regress 
removequeen 

and with the other procedures directly substituted, now 
has the form 

j := 1; i :=  0; 
repeat 

repeat i : = i+ 1 ; testsquare 
until sale V (i = 8) ; 
if  saJb then 
begin setqueen; x[j] := i; j := j-q-l; i := 0 
end else regress 

until ( j  > 8) V (J < 1); 
i f  i > 8 then PRINT(x) else FAILURE 

225 

It is noteworthy that this program still displays the 
structure of the version designed in the first step. Natu- 
rally other, equally valid solutions can be suggested and 
be developed by the same method of stepwise program 
refinement. It is particularly essential to demonstrate this 
fact to students. One alternative solution was suggested 
to the author by E. W. Dijkstra. It is based on the view 
that the problem consists of a stepwise extension of the 
board by one column containing a safely positioned 
queen, starting with a null-board and terminating with 
8 columns. The process of extending the board is formu- 
lated as a procedure, and the natural method to obtain 
a complete board is by recursionn of  this procedure. It can 
easily be composed of the same set of  more primitive 
instructions which were used in the first solution. 

procedure Trycolumn(j) ; 
begin integer i; i : = 0; 

repeat i : = i +  1 ; testsquare; 
i f  sag  then 
begin setqueen; x[j] := i; 

i f j  < 8 then Trycolumn ( j+ 1) ; 
i f  -7 safe then removequeen 

end 
until safe M (i = 8) 

end 

The program using this procedure then is 

Trycolumn (1) ; 
i f  safe then PRINT(x) else FAILURE 

(Note that due to the introduction of  the variable i local 
to the recursive procedure, every column has its own 
pointer of  inspection i. As a consequence, the proce- 
dures 

testsquare 
setqueen 
removequeen 

must be declared locally within Tryco lumn  too, because 
they refer to the i designating the scanned square in the 
current  column.) 

5 .  T h e  G e n e r a l i z e d  8 - Q u e e n s  P r o b l e m  

In the practical world of computing, it is rather un- 
common that a program, once it performs correctly and 
satisfactorily, remains unchanged forever. Usually its 
users discover sooner or later that  their program does 
not deliver all the desired results, or worse, that the re- 
sults requested were not the ones really needed. Then 
either an extension or a change of  the program is called 
for, and it is in this case where the method of  stepwise 
program design and systematic structuring is most valu- 
able and advantageous. If  the structure and the program 
components  were well chosen, then often many of the 
constituent instructions can be adopted unchanged. 
Thereby the effort of  redesign and reverification may be 
drastically reduced. As a matter of  fact, the adaptabi l i ty  
of  a program to changes in its objectives (often called 
maintainability) and to changes in its environment 

Communications April 1971 
of Volume t4 
the  ACM Number 4 



(nowadays called portability) can be measured primarily 
in terms of the degree to which it is neatly structured. 

It is the purpose of the subsequent section to demon- 
strate this advantage in view of a generalization of the 
original 8-queens problem and its solution through an 
extension of the program components introduced be- 
fore. 

The generalized problem is formulated as follows: 

Find all possible configurations of 8 hostile queens on an 8 N 8 
chessboard, such that no queen may be taken by any other queen. 

The new problem essentially consists of two parts: 

1. Finding a method to generate further solutions. 
2. Determining whether all solutions were generated 

or not. 

It is evidently necessary to generate and test candi- 
dates for solutions in some systematic manner. A 
common technique is to find an ordering of  candidates 
and a condition to identify the last candidate. If an 
ordering is found, the solutions can be mapped onto 
the integers. A condition limiting the numeric values 
associated with the solutions then yields a criterion for 
termination of the algorithm, if the chosen method 
generates solutions strictly in increasing order. 

It is easy to find orderings of solutions for the present 
problem. We choose for convenience the mapping 

8 

M(x)  = ~ xjl0 j-1 
j = l  

An upper bound for possible solutions is then 

M ( x ~ )  = 88888888 

and the "convenience" lies in the circumstance that our 
earlier program generating one solution generates the 
minimum solution which can be regarded as the starting 
point from which to proceed to the next solution. This is 
due to the chosen method of testing squares strictly pro- 
ceeding in increasing order of M(x)  starting with 
00000000. The method for generating further solutions 
must now be chosen such that starting with the configu- 
ration of a given solution, scanning proceeds in the same 
order of increasing M, until either the next higher solu- 
tion is found or the limit is reached. 

6. The Extended Program 

The technique of extending the two given programs 
finding a solution to the simple 8-queens problem is 
based on the idea of modification of the global structure 
only, and of using the same building blocks. The global 
structure must be changed such that upon finding a solu- 
tion the algorithm will produce an appropriate indica- 
t ion-e.g,  by printing the solution--and then proceed to 
find the next solution until it is found or the limit is 
reached. A simple condition for reaching the limit is the 
event when the first queen is moved beyond row 8, in 
which case regression out of the first column will take 

place. These deliberations lead to the following modified 
version of the nonrecursive program: 

considerfirstcolumn ; 
repeat trycolumn; 

if sqfe then 
begin setqueef~; eonsMernextcolurrm; 

if lastcoMone then 
begin PRINT(x); regress 
end 

end else regress 
until regressoutoffirstcol 

Indication of a solution being found by printing it now 
occurs directly at the level of detection, i.e. before leav- 
ing the repetition clause. Then the algorithm proceeds 
to find a next solution whereby a shortcut is used by 
directly regressing to the prior column; since a solution 
places one queen in each row, there is no point in further 
moving the last queen within the eighth column. 

The recursive program is extended with even greater 
ease following the same considerations: 

procedure Trycolumn(j )  ; 
begin integer i; 

(declarations of procedures testsquare, advaneequeen, 
setqueen, removequeen, lastsquare) 
i :=0;  
repeat advaneequeen; testsquare; 

if safe then 
begin setqueen; xlj] := i; 

if -n lasteoldone then Tryeolumn(]+l) else PRINT(x); 
removequeen 

end 
until lastsquare 

end 

The main program starting the algorithm then consists 
(apart from initialization of a, b, and e) of the single 
statement Tr ycolumn(1). 

In concluding, it should be noted that both programs 
represent the same algorithm. Both determine 92 solu- 
tions in the same order by testing squares 15720 times. 
This yields an average of 171 tests per solution; the maxi- 
mum is 876 tests for finding a next solution (the first 
one), and the minimum is 8. (Both programs coded in 
the language Pascal were executed by a CDC 6400 com- 
puter in less than one second.) 

7. Conclusions 

The lessons which the described example was sup- 
posed to illustrate can be summarized by the following 
points. 

1. Program construction consists of a sequence of 
refinement steps. In each step a given task is broken up 
into a number of subtasks. Each refinement in the de- 
scription of a task may be accompanied by a refinement 
of the description of the data which constitute the means 
of communication between the subtasks. Refinement of 
the description of program and data structures should 
proceed in parallel. 

2. The degree of modularity obtained in this way will 

226 



determine the ease or difficulty with which a program 
can be adapted to changes or extensions of the purpose 
or changes in the environment (language, computer) in 
which it is executed. 

3. During the process of stepwise refinement, a no- 
tatiot~ which is natural to the problem in hand should be 
used as long as possible. The direction in which the nota- 
tion develops during the process of  refinement is deter- 
mined by the language in which the program must ulti- 
mately be specified, i.e. with which the notation ulti- 
mately becomes identical. This language should there- 
fore allow us to express as naturally and clearly as pos- 
s ine  the structures of program and data which emerge 
during the design process. At the same time, it must give 
guidance in the refinement process by exhibiting those 
basic features and structuring principles which arc natu- 
ral to the machine by which programs are supposed to 
be executed. It is remarkable that it would be difficult to 
find a language that would meet these important  require- 
ments to a lesser degree than the one language still used 
most widely in teaching programming: Fortran.  

4. Each refinement implies a number of  design deci- 
sions based upon a set of  design criteria. Among these 
criteria are efficiency, storage economy, clarity, and reg- 
ularity of structure. Students must be taught to be con- 
scious of  the involved decisions and to critically examine 
and to reject solutions, sometimes even if they are cor- 
rect as far as the result is concerned; they must learn 
to weigh the various aspects of  design alternatives in the 
light of  these criteria. In particular, they must be taught 
to revoke earlier decisions, and to back up, if necessary 
even to the top. Relatively short sample problems will 
often suffice to illustrate this important  point; it is not 
necessary to construct an operating system for this 
purpose. 

5. The detailed elaborations on the development of 
even a short program form a long story, indicating that 
careful programming is not a trivial subject. If this paper 
has helped to dispel the widespread belief that program- 
ming is easy as long as the programming language is 
powerful enough and the available computer  is fast 
enough, then it has achieved one of  its purposes. 

Acknowledgments. The author  gratefully acknowl- 
edges the helpful and stimulating influence of many dis- 
cussions with C.A.R. Hoare and E. W. Dijkstra. 

Announcement: 

Graphics and Image 
Processing-- 
A New Department in 
Communications 

With this issue of Communications we are 
pleased to announce a new department: 
Graphics and Image Processing. The editor of 
this department will be William Newman of the 
University of California at Irvine. 

This department will cover five principal 
areas: 
Q 

Hardware and software techniques for 
producing pictorial output; 
o 
Methodology for the digitization and input of 
pictorial information; 
o 
Methodology for the digital processing and 
storage of such information; 

Languages and techniques for interacting with 
graphical systems; 

Computer applications in which any of the 
above play a significant role. 

References 

The following articles are listed for further reference on the subject 
of programming. 

1. Dijkstra, E. W. A constructive approach to the problem of 
program correctness. BIT 8 (1968), 174-186. 
2. Dijkstra,~E. W. Notes on structured programming. EWD 249, 
Technical U. Eindhoven, The Netherlands, 1969. 
3. Naur, P. Programming by action clusters. BIT9 (1969) 250-258. 
4. Wirth, N. Programming and programming languages. Proc. 
lnternat. Comput. Syrup., Bonn, Germany, May 1970. 

227 

Dr. Newman is professor of information and 
computer science at the University of California 
at Irvine. Previously, he was at the University 
of Utah in the Computer Science Department. 
He holds a Ph.D. in Computer Science from 
London University, was a Research Fellow 
at Harvard, and has been a member of 
ACM since 1967. 

Communications April 1971 
of Volume 14 
the ACM Number 4 


