CS 242

Scope, Function Calls and
Storage Management

P TR S AL R R g Y e

John Mitchell

Revised class schedule

@ Wed Oct 27
¢ No lecture; discussion section during class time
e Midterm Exam 7-9PM

@ Friday Oct 29
¢ No discussion section

Topics
@ Block-structured languages and stack storage
@ In-line Blocks
e activation records
o storage for local, global variables
@ First-order functions
e parameter passing
e tail recursion and iteration
@ Higher-order functions
 deviations from stack discipline
¢ language expressiveness => implementation complexity

Block-Structured Languages

L L L L R A R PR L S B A R e L R R P B

@ Nested blocks, local variables

¢ Example new variables declared in nested blocks
{intx=2;
{inty=3; | .
outer _ .' inner local variable
block ®=¥2; | block
3 global variable

}

e Storage management
— Enter block: allocate space for variables
— Exits block: some or all space may be deallocated

Examples

@ Blocks in common languages
o C {..}
e Algol begin ... end
e ML let ... in ... end

@ Two forms of blocks

¢ In-line blocks
» Blocks associated with functions or procedures

@ Topic: block-based memory management,
access to local variables, parameters,global vars

Simplified Machine Model

B o e

Registers Code Data

Stack
Program
Counter
Environment Heap
Pointer

Interested in Memory Mgmt Only

2 X R~ AN R o e R et F I

@ Registers, Code segment, Program counter
¢ Ignore registers
e Details of instruction set will not matter

@ Data Segment
¢ Stack contains data related to block entry/exit
» Heap contains data of varying lifetime

» Environment pointer points to current stack position
— Block entry: add new activation record to stack
— Block exit: remove most recent activation record

Some basic concepts

B e S e P SRS

@ Scope

« Region of program text where declaration is visible
¢ Lifetime

e Period of time when location is allocated to program

{int x _= o » Inner declaration of x hides outer one.
{ int y.= i * Called “hole in scope”
{intx=..; o Lifetime of outer x includes time when
inner block is executed
by o Lifetime # scope
) b « Lines indicate “contour model” of scope.

In-line Blocks

@ Activation record
¢ Data structure stored on run-time stack
¢ Contains space for local variables

®Example
{ int x=0; Push record with space for x, y
int y=x+1; Set values of x, y
! Push record for inner block
nt z=(x+y)*(x-y);
{int 2=0cy)*0cy) Set value of z
¥ Pop record for inner block
h Pop record for outer block

May need space for variables and intermediate results like (x+y), (x-y)

Activation record for in-line block
@ Control link
¢ pointer to previous record
on stack
@ Push record on stack:

e Set new control link to
point to old env ptr

e Set env ptr to new record
@ Pop record off stack

e Follow control link of
current record to reset
environment pointer

Environment
Pointer

Can be optimized away, but assume not for purpose of discussion.

Example
{int x=0;
int y=x+1;
{ intz=(x+y)*(x-y);
b7

b7

Push record with space for x, y

Set values of x, y

Push record for inner block
Set value of z

Pop record for inner block

Pop record for outer block

Environment
Pointer

Scoping rules

B o e

@ Global and local variables

e X,y are local to outer block { int x=0;
e zis local to inner bock int y=x+1;

¢ X,y are global to inner block {int z=(x+y)*(x-y);

b
@ Static scope Vi
e global refers to declaration in closest enclosing block
@ Dynamic scope
 global refers to most recent activation record

These are same until we consider function calls.

Functions and procedures

2 X R~ AN R o e R et F I

@ Syntax of procedures (Algol) and functions (C)
procedure P (<pars>) <type> function f(<pars>)

begin {
<local vars> <local vars>
<proc body> <function body>
end; I3

@ Activation record must include space for

Activation record for function

B e T E P PR

R
'

@ Return address
¢ Location of code to
execute on function return
@ Return-result address

o Address in activation
record of calling block to
receive return address

e parameters e location to put return ’Parame“ters .
o return address value on function exit) e Locations to contain data
Environment from calling block
e return value Pointer
(an intermediate result) __
Example Function call
| ®Function fact(k) YU fact(3)

fact(n) = if n<=1 then 1
else n * fact(n-1)
@ Return result address
e location to put fact(n)

@ Parameter
¢ set to value of n by calling
sequence
) @ Intermediate result
Environment ¢ |ocations to contain value
Pointer

of fact(n-1)

fact(2)

Environment
Pointer

fact(1)
fact(n) = if n<=1 then 1

else n * fact(n-1)

Return address omitted; would

be ptr into code segment Function return next slide —

Function return

A . B o Tl e RS S 0 R O

- . ; N
L
- -S:| -
fact(1)
fact(n) = if n<=1 then 1
else n * fact(n-1)

Topics for first-order functions
@ Parameter passing

o use ML reference cells to describe pass-by-value,
pass-by-reference

@ Access to global variables

¢ global variables are contained in an activation record
higher “up” the stack

@ Tail recursion
e an optimization for certain recursive functions

See this yourself: write factorial and run under debugger

ML imperative features

2 X R~ AN R o e R et F I

@ General terminology: L-values and R-values
e Assignment y:= Xx+3

ML examples

O L R X R =D e

R

@ Create cell and change contents

— Identifier on left refers to location, called its L-value val X“= -I’?’f Bob™ " -
— Identifier on right refers to contents, called R-value x 1= "Bill"; .
@ ML reference cells and assignment #Create cell and increment y
« Different types for location and contents valy =ref 0; -
X :int non-assignable integer value yi=ly+1;
y:intref location whose contents must be integer & While |oop
ly the conFents of r_:ell y - val i = ref 0;
ref x exFressmn creating new cell initialized to x while 1i < 10 do i := 1i +1;
e ML form of assignment i
y := x+3 place value of x+3 in location (cell) y o
y := ly + 3 add 3 to contents of y and store in location y
Parameter passing Example
pseudo-code Standard ML
@ Pass-by-reference
e Caller places L-value (address) w,@‘ fun f(x :intref) =

of actual parameter in activation record
¢ Function can assign to variable that is passed
@ Pass-by-value
o Caller places R-value (contents)
of actual parameter in activation record
e Function cannot change value of caller’s variable
» Reduces aliasing (alias: two names refer to same loc)

9?)‘5/' (x:=Ix+1; Ix);

y = ref 0 : int ref;

function f (x) = fly) +ly;
{x:=x+1; return x };
vary :int =0;
print fy)+Y; 2 \ funf(z:int) =
S . -
Sb%y let x = ref zin
c?/ue
X = Ix+1; Ix
end;
y = ref 0 : int ref;
fty) +ly;

Access to global variables

A . X B B R R T T

@ Two possible scoping conventions

e Static scope: refer to closest enclosing block

¢ Dynamic scope: most recent activation record on stack
®Example

int x=1; outer block _
functfon g(2) = x+z; f(3)
function f(y) =
{intx = y+1;
return g(y*x) }; o12) [

Which x is used for expression x+z ?

f(3);

Activation record for static scope

T S i L R M

S e

+
j , @ Control link
¢ Link to activation record of
previous (calling) block
@ Access link

e Link to activation record of
closest enclosing block in
program text

@ Difference
e Control link depends on
Environment dynamic behavior of prog
Pointer o Access link depends on

static form of program text

Complex nesting structure

function m(...) {
int x=1;
int x=1;
function n(... {

function g(z) = x+z; function f(y) =

function f(y) { f(3);
intx = y+1;
return g(y*x) };

f(3); ..}

declaration begins a new block.

2 X R~ AN R o e R et F I

function g(z) = x+z;

{intx = y+1;
{ return g(y*x) };

Simplified code has same block nesting,
on(a) .l if we follow convention that each
.m(...)

int x=1;

f(3);

Use access link to find global variable:
— Access link is always set to frame
of closest enclosing lexical block

— For function body, this is block
that contains function declaration

outer block
function g(z) =|x+z;
function f(y
{intx = y+1;

return g(y*x) };

9(12)

f(3)

Static scope with access links

T B A I e L A= Ao B S - R S i Sl

| =

Tail recursion

e

(first-order case)

@ Function g makes a tai/ call to function f if

¢ Return value of function f is return value of g
@ Example

e

tail call not a tail call
/

fun g(x) = if x>0 then f(x) else f(x)*2

Example

f(1,3)

v mm

Calculate least power of 2 greater than y

e s L e s

to that of caller
Question
@ Optimization ot . . ;Z::q ;N;:I i?l'? the
« Can pop activation record on a tail call un f(x,y) = if x>y Somtrol ik
« Especially useful for recursive tail call then x i Optimization ‘
— next activation record has exactly same form else f(2*x, y); ptimizati
f(1,3) + 7; e avoid return to
caller

D L)

Optimization
¢ Set return
value address

Tail recursion elimination

T —
f(1,3)

f(2,3) f(4,3)

fun f(x,y) = if x>y ~ Optimization

then x * pop followed by push =

else f(2*x, y); reuse activation record in place
f(1,3);

Conclusion

¢ Tail recursive function equiv to
iterative loop

Tail recursion and iteration

B o e

f(2,3)

fun f(xy) = ifgy) =t

f(1,3)

then x

initial value

return x;

h

fung(y) =<
X =

f(4,3)

Higher-Order Functions

2 X R~ AN R o e R et F I

@ Language features

» Functions passed as arguments

¢ Functions that return functions from nested blocks

¢ Need to maintain environment of function
@ Simpler case

¢ Function passed as argument

* Need pointer to activation record “higher up” in stack
@ More complicated second case

e Function returned as result of function call

» Need to keep activation record of returning function

Pass function as argument

T B A I e L A= Ao B S - R S i Sl

val x = 4; {intx =4;
fun f(y) = x*y; {int f(int y) {return x*y;}

fun g(h) = let { int g(int—int h) {
val x=7 int x=7;
in return h(3) + x;
h(3) +x; }

a(f); a(f;

i3

There are two declarations of x
Which one is used for each occurrence of x?

Static Scope for Function Argument

A e e TR T L L U LA L 8 e R, S S

Static Scope for Function Argument

A L L L R L WL L S A e R L R SRR P L

val x = 4; {intx =4;
fun f(y) = x*y; {int f(int y) {return x*y;}
fun g(h) = { int g(int—int h) {
let int x=7;
val x=7 return h(3) + x; 90
in ¥
h(3) +x; a(f);
q(f);) 131 h(3) _g>)
- X% local var - 0¥y local var
follow access link follow access link
How is access link for h(3) set? How is access link for h(3) set?
Closures Function Argument and Closures

A . X B B R R T T

@ Function value is pair closure = {env, code)
#When a function represented by a closure is
called,
o Allocate activation record for call (as always)

¢ Set the access link in the activation record using the
environment pointer from the closure

B

S e

Run-time stack with access links

val x = 4;
fun f(y) = x*y;
fun g(h) =
let
val x=7
in
=) h(3) + x;

f
o; o

access link set
from closure

h(3)

Function Argument and Closures

2 X R~ AN R o e R et F I

Run-time stack with access links

{intx=4;
{ int f(int y){return x*y;}
{ int g(int—int h) {
int x=7;
m) retun h(3)+x;
b
a(f); q(f)
nY

h(3) access link set

from closure

Summary: Function Arguments

T B A I e L A= Ao B S - R S i Sl

@ Use closure to maintain a pointer to the static
environment of a function body

@ When called, set access link from closure
@ All access links point “up” in stack
e May jump past activ records to find global vars
« Still deallocate activ records using stack (lifo) order

Return Function as Result

A e L TR e

@ Language feature

¢ Functions that return “new” functions

* Need to maintain environment of function
®Example

fun compose(f,g) = (fn x => g(f x));

@ Function “created” dynamically

« expression with free variables

values are determined at run time
 function value is closure = (env, code)
e code not compiled dynamically (in most languages)

P A P ot = A LR L

Example: Return fctn with private state

A L L L R L WL L S A e R L R SRR P L

fun mk_counter (init : int) =
let val count = ref init
fun counter(inc:int) =
(count := lcount + inc; !count)

in
counter * Function to “make counter”
. returns a closure
end; How is correct value of
_ .| *How is correct valu
val ¢ = mk_counter(1); | o1t determined in c(2) ?
o(2) +c(2);

Example: Return fctn with private state

A . X B B

{int—int mk_counter (int init) {
int count = init;
int counter(int inc) { return count += inc;}
return counter}
int—int ¢ = mk_counter(1);
print ¢(2) + c(2);
b

Function to “make counter” returns a closure
How is correct value of count determined in call c(2) ?

Function Results and Closures

B o e

fun mk_counter (init : int) =
let val count = ref init
fun counter(inc:int) = (count := !count + inc; !count)
in counter end
end;

val ¢ = mk_counter(1); -
o(2) + c(2);

mk_counter(1)

c(2)

Call changes cell
value from 1 to 3

Function Results and Closures
{int—int mk_counter (int init) {
int count = init; int counter(int inc) { return count+=inc;}

}
int—int ¢ = mk_counter(1);
print ¢(2) + c(2);
}

mk_counter(1)

«2)

Call changes cell
value from 1 to 3

Summary: Return Function Results

T B A I e L A= Ao B S - R S i Sl

@ Use closure to maintain static environment
@ May need to keep activation records after return
o Stack (lifo) order fails!
@ Possible “stack” implementation
¢ Forget about explicit deallocation
¢ Put activation records on heap
¢ Invoke garbage collector as needed

* Not as totally crazy as is sounds
May only need to search reachable data

Summary of scope issues

A e e TR T L L U LA L 8 e R, S S

@ Block-structured lang uses stack of activ records
o Activation records contain parameters, local vars, ...
¢ Also pointers to enclosing scope
@ Several different parameter passing mechanisms
@ Tail calls may be optimized
@ Function parameters/results require closures
e Closure environment pointer used on function call
e Stack deallocation may fail if function returned from call
o Closures not needed if functions not in nested blocks

A L L L R L WL L S A e R L R SRR P L

