CS 242

Modularity and Object-Oriented
Programming

B o B B T I L BT A e W

John Mitchell

Reading: Chapter 10 and parts of Chapter 9

Topics
@ Modular program development

e Step-wise refinement

o Interface, specification, and implementation
@ Language support for modularity

e Procedural abstraction

¢ Abstract data types

— Representation independence
— Datatype induction

¢ Packages and modules
¢ Generic abstractions
— Functions and modules with type parameters

Stepwise Refinement

T R L R 7 R R i o S LY M i F = AT S ST

@ Wirth, 1971

e "... program ... gradually developed in a sequence of
refinement steps”

¢ In each step, instructions ... are decomposed into
more detailed instructions.

@ Historical reading on web (CS242 Reading page)

¢ N. Wirth, Program development by stepwise
refinement, Communications of the ACM, 1971

¢ D. Parnas, On the criteria to be used in decomposing
systems into modules, Comm ACM, 1972

e Both ACM Classics of the Month

Dijkstra’s Example (1969)

T e A 272 R e R i = LT ol o FTR o B - SRR

begin
print first 1000 primes
end

begin
variable table p

fill table p with first 1000
primes

begin
int array p[1:1000]
make for k from 1 to 1000
p[k] equal to k-th prime
print p[k] for k from 1 to 1000
end

print table p
end

Program Structure

TR S AL TR A SR, PR B " LA A SR L PR S, SRR L

Data Refinement

TR P AL T P LS ML ST S T S PRRAS L S, ST

@ Wirth, 1971 again:

¢ As tasks are refined, so the data may have to be
refined, decomposed, or structured, and it is natural
to refine program and data specifications in parallel

Example

e e B e SR T B L o)" T e i = 1

AT

@ For level 2, represent account
balance by integer variable
@For level 3, need to maintain

list of past transactions

Modular program design

e s L LU PR T PR A o TR

@ Top-down design

¢ Begin with main tasks, successively refine
@ Bottom-up design

* Implement basic concepts, then combine
@ Prototyping

¢ Build coarse approximation of entire system
e Successively add functionality

Modularity: Basic Concepts

T R L R 7 R R i o S LY M i F = AT S ST

¢ Component
¢ Meaningful program unit
— Function, data structure, module, ...
@ Interface
¢ Types and operations defined within a component
that are visible outside the component
@ Specification
¢ Intended behavior of component, expressed as
property observable through interface
@ Implementation

¢ Data structures and functions inside component

Example: Function Component

T e A 272 R e R i = LT ol o FTR o B - SRR

4 Component

¢ Function to compute square root
@ Interface

o float sqroot (float x)
@ Specification

o If x>1, then sqrt(x)*sqrt(x) ~ x.

@ Implementation
float sqroot (float x){
float y = x/2; float step=x/4; int i;

for (i=0; i<20; i++)if ((y*y)<x) y=y+step; else y=y-step; step = step/2;}
return y;

}

Example: Data Type

TR S AL TR A SR, PR B " LA A SR L PR S, SRR L

@ Component

¢ Priority queue: data structure that returns elements
in order of decreasing priority

®Interface
* Type Pq
e Operations empty 1 pq
insert relt* pg — pq
deletemax : pg — elt * pq
@ Specification

¢ Insert add to set of stored elements
¢ Deletemax returns max elt and pq of remaining elts

Heap sort using library data structure

AL P AL TR 0 RS AL SIS PR Lo P, T

@ Priority queue: structure with three operations
empty 1 pq
insert relt* pg - pq
deletemax : pq — elt * pq
@ Algorithm using priority queue (heap sort)
begin
empty pq s
insert each element from array into s
remove elements in decreasing order and place in array
end

This gives us an O(n log n) sorting algorithm (see HW)

Language support for info hiding
@ Procedural abstraction

¢ Hide functionality in procedure or function
@ Data abstraction

« Hide decision about representation of data structure
and implementation of operations

e Example: priority queue can be binary search tree or
partially-sorted array

e

In procedural languages, refine a procedure or data type
by rewriting it. Incremental reuse later with objects.

Abstract Data Types

e s L LU PR T PR A o TR

@ Prominent language development of 1970's
@ Main ideas:
o Separate interface from implementation
— Example:
o Sets have empty, insert, union, is_member?, ...
¢ Sets implemented as ... linked list ...
¢ Use type checking to enforce separation
— Client program only has access to operations in interface
— Implementation encapsulated inside ADT construct

Modules

T R L R 7 R R i o S LY M i F = AT S ST

@ General construct for information hiding
@ Two parts
o Interface:
A set of names and their types
¢ Implementation:

Declaration for every entry in the interface
Additional declarations that are hidden

@ Examples:
¢ Modula modules, Ada packages, ML structures, ...

Modules and Data Abstraction

T e A 272 R e R i = LT ol o FTR o B - SRR

module Set #Can define ADT
interface .
type set e Private type
val empty : set ¢ Public operations

fun insert : elt * set -> set

: @ More general
fun union : set * set -> set

fun isMember : elt * set -> bool * Several related types
implementation and operations
type set = elt list @ Some languages

val empty = nil

: e Separate interface
:ﬂ: T;irrfgx’)el_ts) s and implementation
o One interface can
end Set have multiple
implementations

Generic Abstractions

TR S AL TR A SR, PR B " LA A SR L PR S, SRR L

@ Parameterize modules by types, other modules
@ Create general implementations
e Can be instantiated in many ways
@ Language examples:
¢ Ada generic packages, C++ templates, ML functors, ...
e ML geometry modules in course reader

e C++ Standard Template Library (STL) provides
extensive examples

C++ Templates

AL P AL TR 0 RS AL SIS PR Lo P, T

@ Type parameterization mechanism
o template<class T> ... indicates type parameter T
e C++ has class templates and function templates

@ Instantiation at link time
» Separate copy of template generated for each type
e Why code duplication?
— Size of local variables in activation record
— Link to operations on parameter type

Example (discussed in earlier lecture)
@ Monomorphic swap function
void swap(int& x, int& y){
inttmp =x; x=y; y=tmp;
b
@ Polymorphic function template
template<class T>
void swap(T& x, T& yX
Ttmp=x; x=y,; y=tmp;
¥
@ Call like ordinary function
floata, b; ... ; swap(a,b); ...

R S T L AW T

Standard Template Library for C++

e s L LU PR T PR A o TR

@ Many generic abstractions
« Polymorphic abstract types and operations
@ Useful for many purposes
o Excellent example of generic programming
@ Efficient running time (but not always space)
@ Written in C++
¢ Uses template mechanism and overloading
e Does not rely on objects — No virtual functions

Architect: Alex Stepanov

Main entities in STL

TR L R 7 R R 2 o R T R F L AT ST

@ Container: Collection of typed objects

e Examples: array, list, associative dictionary, ...
®lterator: Generalization of pointer or address
@ Algorithm
@ Adapter: Convert from one form to another

e Example: produce iterator from updatable container
@ Function object: Form of closure (“by hand”)
@ Allocator: encapsulation of a memory pool

e Example: GC memory, ref count memory, ...

Example of STL approach

T e AT v

A S B R e T R T

@ Function to merge two sorted lists

e merge : range(s) x range(t) x comparison(u)
— range(u)
This is conceptually right, but not STL syntax.

@ Basic concepts used

¢ range(s) - ordered “list” of elements of type s, given
by pointers to first and last elements

e comparison(u) - boolean-valued function on type u
e subtyping - s and t must be subtypes of u

How merge appears in STL

TR S AL TR A SRR, PERA 1 B LA A SR L PP LS S, ST L

@ Ranges represented by iterators
e iterator is generalization of pointer
e supports ++ (move to next element)

Comparison operator is object of class Compare

@ Polymorphism expressed using template
template < class Inputlterator1, class Inputlterator2,
class Outputlterator, class Compare >
Outputlterator merge(Inputlterator1 first1, Inputlterator1 last1,
Inputlterator2 first2, Inputlterator1 last2,
Outputlterator result, Compare comp)

Comparing STL with other libraries

TEL Pt AN TIAS 2 LR S

oC:

B LA TR Lo P, LT

gsort((void*)v, N, sizeof(v[0]), compare_int);

®C++, using raw C arrays:

int v[N];
sort(v, v+N);

@ C++, using a vector class:

vector V(N);
sort(v.begin(), v.end());

Efficiency of STL

e -

@ Running time for sort
N = 50000 N = 500000

C 1.4215 18.166

C++ (raw arrays) 0.2895 3.844

C++ (vector class) 0.2735 3.802
@ Main point

e Generic abstractions can be convenient and efficient !
» But watch out for code size if using C++ templates...

Boost Lambda Library

L LU PR RIE PRI R AR S8

= L e PR

@ C++ library providing lambda expressions
QExampIe) function e/x\wessmn)
for_each(a.begin(), a.end(), Std::cout << _1 << '');
@ Function expression
e Function arguments _1, 2, 3,.. ,_9
e Call using usual syntax (std::cout << _1 << '')(5)
— Too many arguments — OK
— Too few arguments — Compile-time error
¢ Implementation uses overloading

— cout << _1 is a function expression because << is
overloaded so that if one operand is a function expression,
the result is a function expression

Object-oriented programming

T R L R 7 R R i o S LY M i F = AT S ST

@ Primary object-oriented language concepts
e dynamic lookup
e encapsulation
e inheritance
e subtyping
@ Program organization
* Work queue, geometry program, design patterns
@ Comparison
¢ Objects as closures?

Objects

T e A 272 R e R i = LT ol o FTR o B - SRR

@ An object consists of

¢ hidden data

instance variables, also called
member data

hidden functions also possible
¢ public operations
methods or member functions

can also have public variables
in some languages

@ Object-oriented program:
¢ Send messages to objects

What's interesting about this?

TR S AL TR A SR, PR B " LA A SR L PR S, SRR L

@ Universal encapsulation construct
¢ Data structure
e File system
¢ Database
¢ Window
e Integer
@ Metaphor usefully ambiguous
e sequential or concurrent computation
o distributed, sync. or async. communication

Object-Orientation

TR P AL TR P LIRS A, SIS A T A P TR LS ST, SR

@ Programming methodology
e organize concepts into objects and classes
e build extensible systems
@ Language concepts
e dynamic lookup
e encapsulation
o subtyping allows extensions of concepts
« inheritance allows reuse of implementation

Dynamic Lookup

@ In object-oriented programming,
object > message (arguments)
code depends on object and message

@ In conventional programming,

operation (operands)
meaning of operation is always the same

Fundamental difference between abstract data types and objects

R S T L AW T

Example

e s L LU PR T PR A o TR

@ Add two numbers X > add (y)
different add if x is integer, complex

@ Conventional programming add (X, y)
function add has fixed meaning

Very important distinction:
Overloading is resolved at compile time,
Dynamic lookup at run time

Language concepts

TR L R 7 R R 2 o R T R F L AT ST

@ "dynamic lookup”
o different code for different object
e integer “+” different from real “+”
®encapsulation
@ subtyping
®inheritance

Encapsulation

T S s R R i R R R R R R R e W B R TR T

@ Builder of a concept has detailed view
@ User of a concept has “abstract” view
@ Encapsulation separates these two views

¢ Implementation code: operate on representation

¢ Client code: operate by applying fixed set of
operations provided by implementer of abstraction

esease 1

Comparison with Abstract Data Types

TR S AL TR A SRR, PERA 1 B LA A SR L PP LS S, ST L

@ Traditional (non-0O0) approach to encapsulation
is through abstract data types
@ Advantage
o Separate interface from implementation
#Disadvantage
¢ Not extensible in the way that OOP is

We will look at ADT’s example to see what problem is
Better: some HW involving C++ classes w/o virt fctn

Abstract Data Types

TEL Pt AN TR P L A, S L AL PR AT, AT

@ Guarantee invariants of data structure

 only functions of the data type have access to the
internal representation of data

@ Limited “reuse”

e Cannot apply queue code to pqueue, except by
explicit parameterization, even though signatures
identical

e Cannot form list of points, colored points

@ Data abstraction is important part of OOP,

innovation is that it occurs in an extensible form

Language concepts
#"Dynamic lookup”
« different code for different object
e integer “+"” different from real “+”
@ Encapsulation
o Implementer of a concept has detailed view
e User has “abstract” view
* Encapsulation separates these two views
@ Subtyping
#Inheritance

AT

Subtyping and Inheritance
@ Interface

e The external view of an object
@ Subtyping

¢ Relation between interfaces
@ Implementation

¢ The internal representation of an object
@ Inheritance

¢ Relation between implementations

L i L e T

Object Interfaces

TR L R 7 R R 2 o R T R F L AT ST

@ Interface
¢ The messages understood by an object
@ Example: point
e x-coord : returns x-coordinate of a point
e y-coord : returns y-coordinate of a point
e move : method for changing location
@ The interface of an object is its type.

Subtyping

T e A 272 R e R i = LT ol o FTR o B - SRR

@ If interface A contains all of interface B, then
A objects can also be used B objects.

Point Colored_point
x-coord x-coord
y-coord y-coord
move color

move

change_color

@ Colored_point interface contains Point
e Colored_point is a subtype of Point

Inheritance

TR S AL TR A SRR, PERA 1 B LA A SR L PP LS S, ST L

@ Implementation mechanism

@ New objects may be defined by reusing
implementations of other objects

Example
class Point @ Subtyping
private * Colored points can be
float x, y used in place of points
public ¢ Property used by client
point move (float dx, float dy); program
class Colored_point @ Inheritance
private

e Colored points can be
implemented by resuing
point implementation

float x, y; color c
public
point move(float dx, float dy);

e Propetry used by
point change_color(color newc);

implementor of classes

OO Program Structure

e -

@ Group data and functions

Example: Geometry Library

e s L LU PR T PR A o TR

@ Define general concept shape

#Class @ Implement two shapes: circle, rectangle
¢ Defines behavior of all objects that are instances of @ Functions on implemented shapes
the class center, move, rotate, print
#Subtyping # Anticipate additions to library
¢ Place similar data in related classes
Inheritance
¢ Avoid reimplementing functions that are already
defined
Shapes Subtype hierarchy

T R L R 7 R R i o S LY M i F = AT S ST

@ Interface of every shape must include
center, move, rotate, print
Different kinds of shapes are implemented
differently
e Square: four points, representing corners
e Circle: center point and radius

T e A 272 R e R i = LT ol o FTR o B - SRR

@ General interface defined in the shape class
@ Implementations defined in circle, rectangle
@ Extend hierarchy with additional shapes

Code placed in classes

TR S AL TR A SR, PR B " LA A SR L PR S, SRR L

c_move |c_rotate |c_print

r_center |r_move r_rotate |r_print

@ Dynamic lookup

e circle > move(x,y) calls function c_move
@ Conventional organization

e Place c_move, r_move in move function

Example use: Processing Loop

TR P AL T P LS ML ST S T S PRRAS L S, ST

Remove shape from work queue
Perform action

I

Control loop does not know the
type of each shape

Subtyping differs from inheritance

e -

Subtyping
————— Inheritance

Design Patterns

e s L LU PR T PR A o TR

@ Classes and objects are useful organizing
concepts

@ Culture of design patterns has developed
around object-oriented programming

e Shows value of OOP for program organization and
problem solving

What is a design pattern?

TR L R 7 R R 2 o R T R F L AT ST

@ General solution that has developed from
repeatedly addressing similar problems.
@ Example: singleton

e Restrict programs so that only one instance of a class
can be created

¢ Singleton design pattern provides standard solution
@ Not a class template

¢ Using most patterns will require some thought

e Pattern is meant to capture experience in useful form

Standard reference: Gamma, Helm, Johnson, Vlissides

OOP in Conventional Language

T e A 272 R e R i = LT ol o FTR o B - SRR

@ Records provide “dynamic lookup”
@ Scoping provides another form of encapsulation

Try object-oriented programming in ML.
Will it work? Let’s see what’s fundamental to OOP

Dynamic Lookup (again)

TR S AL TR A SRR, PERA 1 B LA A SR L PP LS S, ST L

receiver - operation (arguments)

code depends on receiver and operation

This is may be achieved in conventional languages
using record with function components

Stacks as closures

TR P AL T P LS ML ST S T S PRRAS L S, ST

fun create_stack(x) =
let val store = ref [x] in
{push = fn (y) =>
store := y::(!store),
pop =fn() =>
case !store of
nil => raise Empty |
y::m => (store :=m; y)
} end;

val stk = create_stack(1);

stk = {pop=fn,push=fn} : {pop:unit -> int, push:int -> unit}

Does this work ???

L U PP BT PR R e e

@ Depends on what you mean by “work”
@ Provides

¢ encapsulation of private data
¢ dynamic lookup

¢ But

o cannot substitute extended stacks for stacks
¢ only weak form of inheritance

— can add new operations to stack

— not mutually recursive with old operations

R S T L AW T

Varieties of OO languages

e s L LU PR T PR A o TR

@ class-based languages

¢ behavior of object determined by its class
@ object-based

* objects defined directly
@ multi-methods

o operation depends on all operands

This course: class-based languages

History

@ Simula 1960’s
¢ Object concept used in simulation

@ Smalltalk 1970's
¢ Object-oriented design, systems

OC++ 1980's
¢ Adapted Simula ideas to C

®Java 1990’s

¢ Distributed programming, internet

Next lectures

T S s R R i R R R R R R R e W B R TR T

@ Simula and Smalltalk
OC++
®Java

Summary

SRR RLEES ST W S P

@ Object-oriented design
@ Primary object-oriented language concepts
e dynamic lookup
e encapsulation
e inheritance
¢ subtyping
@ Program organization
* Work queue, geometry program, design patterns
Comparison
¢ Objects as closures?

A L P LS, LT L

rooTEn

P AL TR P LS LA, S R T L R Lo e, LTI

10

