CS 242

Interoperability

P TR S AL R R g Y e

John Mitchell

Topic

T B A I e L A= Ao B S - R S i Sl

@ Many systems built using multiple languages
e Fortran calls to C code, vice versa
e Microsoft: VBasic, C, C++

Communication between modules
e Function call with primitive-type arg and result?
e Shared objects?
e Error handling and exceptions?

Topic

A L TR A L R P AT R 2R A B SR AL

@ Many systems built using multiple languages
e Fortran calls to C code, vice versa
e Microsoft: VBasic, C, C++

4 Communication between modules
¢ Function call with primitive-type arg and result? Yes
e Shared objects? Focus of this lecture
¢ Error handling and exceptions? Still evolving

Three basic approaches

@ Client-Implementation Intermediary

¢ Convert messages from one implementation to another
e Example: Corba

@ Binary compatibility
e Compatible values passed between implementations
¢ Example: COM

@ Neutral platform

¢ Run on multiple languages on virtual machine
e Example: .Net

Background: some related issues

A . B o Tl e RS S 0 R O

@ Dynamic linking
¢ Update parts of a system independently

— C++: Link compiled code to stub
— Stub contains code to interact with DLL

¢ Share components among different applications
@ Implementation compatibility

e Can C++ component compiled with one compiler be
dynamically linked with component from another?

@ Inter-language interoperability
¢ Two languages ~ two compilers

Corba Concept

B o e

@ Insert “broker” between client and server

ORB
request

CLIENT SERVER/OBJECT

IMPLEMENTATION

ORB
Result/
eITor

Corba Architecture

2 X R~ AN R o e R et F I

Object
Implementation

/N /)

ORB
Interface

Object
Adapter

ORB Core

Functions of ORB

T B A I e L A= Ao B S - R S i Sl

4 Communication between client and server

¢ Insulates application system configuration details
@ Specific steps

o Intercepts calls

« Finds object

¢ Invokes method

e Passes parameters

e Returns results or error messages

Interface description language

A e e TR P s . s s

i

/ \

Interface

ORB Core

Interface Description

« IDL generates ‘stubs’ and ‘skeleton’ programs for each interface
e 'Stub’ acts like a local function call, providing interface to ORB
* ‘Skeleton’ yields server side implementation of IDL interface

CORBA application development

A s e A LG S B AR e L R R P B

@ Write the IDL interface

@ Map .idl file to target language (C++, Java, ...)
o IDL Compiler

@ Develop a Client application
@ Develop the Server
@ Compile and run the application

IDL Example

A . B o Tl e RS S 0 R O

Hello.idl

module HelloApp {

interface Hello {
string sayHello();

bi

HelloHolder.java Hello.java
(delegates r/w methgds) (IDL interface in Java)

HelloHelper.java .
(auxiliary functionality) _HelloStub java

. client stub
_HelloImplBase.java ¢)
(server skeleton)

Interface translation

B o e

@ IDL Statement Java Statement
module HelloApp package HelloApp;
interface Hello public interface Hello
string sayHello(); String sayHello();

[* Hello.java as generated by idltojava */
module HelloApp { package HelloApp;
interface Hello { public interface Hello
string sayHello(); ‘ extends org.omg.CORBA.Object {

) String sayHello();

IDL Compiler Output

2 X R~ AN R o e R et F I

4 _HelloImplBase.java

« Abstract class provides the server skeleton, basic CORBA functionality

* Implements Hello.java interface

* server class HelloServant extends _HelloImplBase

4 _HelloStub.java
« Client stub, with CORBA functionality for the cl
« Implements Hello.java interface.

@ Hello.java

ient

« Interface containing Java version of IDL interface, extends

org.omg.CORBA.Object
@ HelloHelper.java

« Final class provides auxiliary functionality, including a narrow method
to cast CORBA object references to proper type

4 HelloHolder.java
« Final class has public instance member of type

Hello

* Provides operations for out and in/out arguments, which CORBA

assumes but do not map immediately to Java

Just to give you some idea of what this looks like ...

Implementing the Client

: . import HelloApp.*;
pub\\g class HelloClient { import org.omg.CosNaming.*;
static Hello hellolmpl; import org.omg.CosNaming.NamingContextPackage.*
public static void main(String args]) { import org.omg.CORBA.*;
try{ /I create and initialize the ORB
ORB orb = ORB.init(args, null);
/I get the root naming context
org.omg.CORBA.Object objRef = orb.resolve_initial_references("NameService");
/I Use NamingContextExt instead of NamingContext; part of Interoperable naming Service
NamingContextExt ncRef = NamingContextExtHelper.narrow(objRef);
Il resolve the Object Reference in Naming
String name = "Hello";
hellolmpl = HelloHelper. Ref.resolve_
System.out.printin("Obtained a handle on server object: " + hellolmpl);
System.out.printin(helloimpl.sayHello());
hellolmpl.shutdown();

}
catch (Exception) { System.out.printin("ERROR: " +e); e.printStackTrace(System.out);
h

Hello World Architecture

A e e TR T L L U LA L 8 e R, S S

Application Interface
(Hello Description
inIDL
(Hello.idl)

Client Stubs
N

Clientjava)

Implementation
Code
(Hello
Servantjava
Server Skeleton
(_HellolmplBase java)

(Hello java)

il

I TCP/IP I

Hardware Hardware

TCP/IP

See http://java.sun.com/j2se/1.4.2/docs/quide/idl/jidIExample.html

Inter-ORB Communication

A L L L R L WL L S A e R L R SRR P L

ORB Core

Internet

Inter-ORB Protocol Interface
(110P)

ORB Core

Corba ORB Architecture: m

ore details

‘ INTERFACE

IDL
COMPILER

REPOSITORY

IMPLEMENTATION

REPOSITORY

o ZE,
operation()
out args + return value

OBJECT
(SERVANT)

-0

IDL
¥
OB

JECT
ADAPTER.

ORB
INTERFACE
GIOP/IOP

C) STANDARD INTERFACE

ORB

CORE

C) STANDARD LANGUAGE MAPPING

. ORB-SPECIFIC INTERFACE QSTANDARD PROTOCOL

Corba Summary
@ Interface definition language (IDL)

« Define interface in “neutral language”

« Compiler generates several related files automatically
@ Object request broker (ORB)

¢ System intermediary handles requests, response

COM: Component Object Model

2 X R~ AN R o e R et F I

@ Purpose (marketing page)

e “"COM is used by developers to create re-usable
software components, link components together to
build applications, and take advantage of Windows
services. ...”

@ Current incarnations

e COM+, Distributed COM (DCOM) , ActiveX Controls
@ References

¢ Don Box, Essential COM

e MSsite: http://www.microsoft.com/com/

Central ideas in COM

T B A I e L A= Ao B S - R S i Sl

@ Clients program using interfaces, not classes

@ Implementation code is dynamically linked

Manage requirements at run time
e Object implementors declare runtime requirements
e System ensures that these requirements are met

@ Evolution
¢ Interfaces and dynamic linking are classic COM

¢ Runtime requirements handled using Microsoft
Transaction Server (MTS) and COM+

Motivation

A e e TR T L L U LA L 8 e R, S S

@ Build dynamically composable systems
» Not all parts of application are statically linked

@ Independence of components
¢ One change should not propagate to all source code
¢ New components usable in place of old

@ Compatibility of components
¢ Use components with different runtime requirements
* Mix heterogeneous objects in a single process

Evolution in appreciation for abstraction

L L L L R A R PR L S B A R e L R R P B

#1980s: classes and objects
¢ Classes used for object implementation
o Classes also used for consumer/client type hierarchy
@ Dependencies between client and object
e Client assumes complete knowledge of public interface
¢ Client may know even more under certain languages
(C++)
#1990s: separate interface from implementation
¢ Client to program in terms of abstract types
e Completely hides implementation class from client

Interface-Based Programming

A . B o Tl e RS S 0 R O

@ Define interfaces for classes
o C++ : use abstract base classes as interfaces
@ Associate implementations with interfaces
o C++: inheritance
— Class FastString : public IFastString {...};
Create implementation objects without exposing layout
e Usually a creator or factory function
* Manipulate object indirectly through intermediate structure
¢ Class unsuitable for declaring variables
— Want to avoid dependence on class
@ Client must be able delete object
* Since new operator not used by the client, cannot call delete
* Reference counting can be used

Interoperability

@ Use of interfaces separates implementation
 Different implementations can coexist
e These can be built in different languages

Interfaces in different languages

2 X R~ AN R o e R et F I

@ Pure abstract base classes in C++
« All methods are pure virtual
¢ Never any code, only signature
* Format of C++ vtable/vptr defines expected stack frame
@ Represented directly as interfaces in Java
@ Represented as Non-Creatable classes in Visual Basic
@ Uniform binary representation independent of how
object is built
@ Identified uniquely by a 128-bit Interface ID (IID)

IUnknown

@ Three abstract operations (QueryInterface, AddRef, and Release)
comprise the core interface of COM, IUnknown

4 All COM interfaces must extend IUnknown
4 All COM objects must implement IUnknown

D_tUsi 0wy

IDL: generate Interfaces

A R e TR T L L LA L 8

@ COM interfaces may be defined in COM IDL
@ IDL compiler generates C/C++ interface definitions

]

COM IDL

9 COM interfaces may be defined in COM IDL
@ IDL compiler generates C/C++ interface definitions

COM IDL

A . B o Tl e RS S 0 R O

@ All elements in an IDL file can have attributes
e Appear in [] prior to subject of attributes
@ Interfaces are defined at global scope
* Required by MIDL to emit networking code
@ Must refer to exported types inside library block
* Required by MIDL to emit type library definition
4 Can import std interface suite
— WTYPES.IDL - basic data types
— UNKNWN.IDL - core type interfaces
— OBJIDL.IDL - core infrastructure itfs
— OLEIDL.IDL - OLE itfs
— OAIDL.IDL - Automation itfs
— OCIDL.IDL - ActiveX Control itfs

COM IDL

B o e

CalcTypes.idl
[o

COM IDL - C++ Mapping

2 X R~ AN R o e R et F I

CalcTypes.h

COM IDL - Java/VB Mapping

T B A I e L A= Ao B S - R S i Sl

CaicTypes.java

COM And Error Handling

4 COM (today) doesn't support typed C++ or Java-style exceptions

4 All (remotable) methods must return a standard 32-bit error code
called an HRESULT

* Mapped to exception in higher-level languages
* Overloaded to indicate invocation errors from proxies

Severity (31) Facility (27-16) Code (15-0)

partichiaravalue’

P NyL

COM Data Types

e L L o e A e A L A R P L

COM Data Types

=

Reference counting

B o e

@ Leverage indirection through reference object
¢ Clients “Delete” each reference, not each object
@ Object checks references to it

¢ Objects track number of references and auto-delete
when count reaches zero

e Requires 100% compliance with ref. counting rules
@ Client obligations
o All operations that return interface pointers must
increment the interface pointer’s reference count

¢ Clients must inform object that a particular interface
pointer has been destroyed

COM Summary

B L e T

@ Clients program using abstract data types: interfaces

Clients can load method code dynamically without concern
for C++ compiler incompatibilities

L 2

@ Clients interrogate objects for extended functionality via
RTTI-like constructs

L 2

L 2

Clients notify objects when references are duplicated or
destroyed

Supports multi-language programming

.NET Framework

T B A I e L R M= Ao B i S R S i Tl e

@ Microsoft cross-language platform
e Many languages can use and extend .NET Framework
— Compile language to MSIL
¢ All languages are interoperable
@ Focus on security and trust
¢ Building, deploy and run semi-trusted applications
@ Two key components
e Common Language Runtime
e .NET Framework Class Library

Slide credit: Graphics, etc. stolen from MS slides on web

Current .NET Languages

R e e]

& C++ ¢ SmallTalk
@ Visual Basic 4 Oberon
& C# 4 Scheme
@ Jscript ¢ Mercury
®J# ¢ Oz

@ Perl ¢ RPG

@ Python ¢ Ada

@ Fortran ¢ APL

4 COBOL 4 Pascal
@ Eiffel ¢ ML

@ Haskell

Language Examples

e T s ar w EES L

J#

sqlcommand cmd = new Sqlcommand("select * from "+s, sqlconn);

string s = "authors";

cmd.Executereader();

VB.NET

Dim s as string

s = "authors"

Dim cmd As New SqlCommand("select * from " & s, sqlconn)
cmd.ExecuteReader()

Language Examples

A . B o Tl e RS S 0 R O

C#

string s = "authors";
Sq1Command cmd = new SqlCommand("select * from "+s, sqlconn);
icmd . ExecuteReader();

++
string *s = S"authors"; c

sqlcommand cmd = new

sqlcommand(String: :Concat(S"select * from ", s),
sqlconn);

cmd . ExecuteReader() ;

Language Examples

. A I i - Mmoo S RSB B

JScript
var s = "authors"
var cmd = new SqlcCommand("select * from
cmd. ExecuteReader ()

+ s, sqlconn)

Perl

string *s = s"authors";

sq1command cmd = new SqlCommand(String::Concat(s"select *
from ", s), sqlconn);

cmd . Execut: derQ;

Python

s = "authors"
cmd =Sq1Command("select * from " + s, sqlconn)
cmd. ExecuteReader()

Language Example

2 X R~ AN R o e R et F I

Cobol

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
CLASS sqlcommand AS “System.Data.SqlClient.SqlCommand"
CLASS sqlConnection AS "System.Data.SqlClient.SqlConnection”.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 str PIC X(50).
01 cmd-string PIC X(50).
01 cmd OBJECT REFERENCE SqlCommand.
01 sqlconn OBJECT REFERENCE SqlConnection.
PROCEDURE DIVISION.
*> Establish the sqQL connection here somewhere.
MOVE "authors” TO str.
STRING "select * from “ DELIMITED BY SIZE,
str DELIMITED BY " " INTO cmd-string.
INVOKE SqlcCommand "NEW" USING BY VALUE cmd-string sqlconn RETURNING cmd.
INVOKE cmd "ExecuteReader".

Language Examples

T B A I e L A= Ao B S - R S i Sl

RPG

Dc1F1d MyInstobj Type(System.Data.SqlClient.SqlCommand)

Dc1F1d s Type(*string)

s = "authors"

MyInstObj = New System.Data.SqlClient.SqlCommand("select *
from "+s, sqlconn)

MyInstObj.ExecuteReader()

Fortran

assembly_external(name="System.Data.Sq1Client.SqlCommand")
sqlcmdcharacter*10 xsqlcmd

cmd x="authors'

cmd = sqlemd("select * from "//x, sqlconn)

call cmd.ExecuteReader()

end

Language Examples

A e e TR T L L U LA L 8 e R, S S

(let* ((s "authors™) Scheme
(cmd (new-sqlcommand (string-append "select * from " s)

sqlconn)))

(execute-command cmd))

Tocal Eiffel
s: STRING
cmd: SQLCOMMAND
do
s := "authors"
create cmd("select * from " + s, sqlconn)
cmd. ExecuteReader ()
end

Framework Architecture

Common Language Runtime

L e S T e (RS A T P
DEVELOPMENT
- S ; . ! : Ll’
_F";
Source code C# MSIL
J# Metadata
ve Resources

Common Language Runtime

B o e

DEVELOPMENT DEPLOYMENT
Global

" Install Assembly
Assembly = __)_ Cache (GAC)

L s

Ce i
Brow= s Application

VB
c‘?.'f°' Directory

Download
Cache

Common Language Runtime

DEVELOPMENT DEPLOYMENT
Ass_rembly
on Target

AssemBl I nstallJ} Machi%e

Co
Brows A ation
EXECUTION SIFI‘ story
JIT Compill Class Policy } ~ Assembly
& Verificati Loader Manage Loader
— — Doy
Garbage Collection
Native .exe Code ~ E tion M -.;
K E X ion n
+ GC table Manager * coptonte ag_e-
— _ . Thread Suppc::_t_}

- Security Permissio
Debug Engine Eﬂforcemin_!__)

Security Issues

T B A I e L A= Ao B S - R S i Sl

@ OS security is based on user rights

@ CLR security, added on top of OS security, gives
rights to code

}

.

.NET Summary

A e e TR T L L U LA L 8 e R, S S

@ Compile multiple languages to common
intermediate language (MSIL)
@ MSIL executed by virtual machine
e Similar to Java VM in many respects
¢ More elaborate security model
o JIT is standard, instead of interpreter

@ MSIL contains special provisions for certain
languages

Summary

v e A L

¢ CORBA
¢ Interoperability through programming conventions,
ORB intermediary
4COM

e Conventions for producing binary-compatible objects

¢ Client uses interface only, no knowledge of object
format

& .NET
¢ Compile multiple language to single MSIL

e MSIL handles dynamic linking/loading, security, ...
— “managed” and “unmanaged” code

L L e B A e L i R A LR

A . B~ o Tl e~ £ o A R Tt A o T

