CS 242

Fundamentals

e T

John Mitchell

Reading: Chapter 4

2 O S S T T I T e S

Syntax and Semantics of Programs
@ Syntax

¢ The symbols used to write a program
@ Semantics

e The actions that occur when a program is executed
@ Programming language implementation

e Syntax — Semantics

e Transform program syntax into machine instructions
that can be executed to cause the correct sequence
of actions to occur

B

Interpreter vs Compiler

A e e TR T L L U LA L 8 e R, S S

Typical Compiler

Source
Program

F
" —
—

Target
Program

See summary in course text, compiler books

Brief look at syntax

A . B o Tl e RS S 0 R O

@ Grammar
e i=n| ete | ee
n d | nd
du=0]1]2|3|4|5]6]178]9
@ Expressions in language
e > e-e - e-e+e = n-n+n — nd-d+d — dd-d+d
- ... 227-4+3

Grammar defines a language
Expressions in language derived by sequence of productions

Many of you are familiar with this to some degree

Parse tree
@ Derivation represented by tree

e > e-e - e-e+e = n-n+n — nd-d+d — dd-d+d
- .. 227-4+3

PN
VRN

7 e+ e
! :

Tree shows parenthesization of expression

Parsing

2 X R~ AN R o e R et F I

@ Given expression find tree
© Ambiguity
e Expression 27-4+3 can be parsed two ways
e Problem: 27-(4+3) = (27-4)+3
4 Ways to resolve ambiguity
» Precedence
— Group * before +
— Parse 3*4 + 2 as (3*%4) + 2
o Associativity
— Parenthesize operators of equal precedence to left (or right)
—Parse 3-4+5as(3-4)+5
See book for more info

Theoretical Foundations

T B A I e L A= Ao B S - R S i Sl

@ Many foundational systems
e Computability Theory
¢ Program Logics
e Lambda Calculus
¢ Denotational Semantics
e Operational Semantics
e Type Theory
@ Consider two of these methods
e Lambda calculus (syntax, operational semantics)
* Denotational semantics

Plan for next 1.5 lectures

A e e TR T L L U LA L 8 e R, S S

@ Lambda calculus
@ Denotational semantics
@ Functional vs imperative programming

For type theory, take CS258 in winter

Lambda Calculus
@®Formal system with three parts
¢ Notation for function expressions
e Proof system for equations
o Calculation rules called reduction
@ Additional topics in lambda calculus
¢ Mathematical semantics (=model theory)
¢ Type systems

We will look at syntax, equations and reduction

There is more detail in the book than we will cover in class

History
@ Original intention
e Formal theory of substitution (for FOL, etc.)
@ More successful for computable functions
e Substitution --> symbolic computation
o Church/Turing thesis
@ Influenced design of Lisp, ML, other languages
e See Boost Lambda Library for C++ function objects
@ Important part of CS history and foundations

Why study this now?

B o e

@ Basic syntactic notions
¢ Free and bound variables
¢ Functions
¢ Declarations
@ Calculation rule
e Symbolic evaluation useful for discussing programs
¢ Used in optimization (in-lining), macro expansion
— Correct macro processing requires variable renaming
o Tllustrates some ideas about scope of binding

— Lisp originally departed from standard lambda calculus,
returned to the fold through Scheme, Common Lisp

Expressions and Functions
@ Expressions
X+y X+ 2%y +z
@ Functions
AX. (X+Y) Az (X + 2%y + z)
@ Application
(. (x+y)) 3 3+y
(Az.(x+2*y +2))5 = x+2*y +5

Parsing: ax. f (fx) = ax.(f(f (x)))

ngher -Order Functions

T B A I e L A= Ao B S - R S i Sl

@ Given function f, return function f ° f
M. ax. f (fx)

®How does th|s work?
(/f X, f(f X))« (/y y+1)/‘
Ax. (. y+1) (. y+1) \\)})

= 2 (y y+1) (x+1)

AX. (x+1)+1

Same result if step 2 is altered.

Same procedure L|sp syntax
@ Given function f, return function f ° f
(lambda (f) (lambda (x) (f (f x))))
@ How does this work?
((lambda (f) (lambda (x) (f (f x)))) (lambda (y) (+ vy 1))

= (lambda (x) ((lambda (y) (+y 1))
((lambda (y) (+y 1)) x))))

(lambda (x) ((lambda (y) (+ vy 1)) (+ x 1))))

(lambda (x) (+ (+ x 1) 1))

Declaratlons as “Syntactic Sugar”

A Lt S AL LR e e A A L i R A LR

function f(x)
return x+2
end;
f(5);
(f. f(5)) (Ax. x+2)
block body declared function

letx=e,ine, = (Ax. &) e

Extra reading: Tennent, Language Design Methods Based on
Semantics Principles. Acta Informatica, 8:97-112, 197

Free and Bound Varlables

A . B o Tl e RS S 0 R O

@ Bound variable is “placeholder”
e Variable x is bound in Ax. (x+y)
e Function Ax. (x+Y) is same function as Az. (z+y)
@ Compare
Ix+ydx = [z+ydz vx P(X) = vz P(z)
®Name of free (=unbound) variable does matter
¢ Variable y is free in Ax. (x+y)
e Function Ax. (x+y) is not same as ix. (x+z)
@ Occurrences
e yis free and bound in 2x. (()_Y.‘y+2‘) X)+y

Reduction

@ Basic computation rule is B-reduction
(Ax.e)) e, — [ey)/xle;
where substitution involves renaming as needed
(next slide)
@ Reduction:
¢ Apply basic computation rule to any subexpression
e Repeat
@ Confluence:
o Final result (if there is one) is uniquely determined

Rename Bound Variables
@ Function application
(Af. ax. f(Fx)) (y. y+x)

SR

apply twice add x to argument

@ Substitute “blindly”
X [y y+x) (. y+x) X)] = A x+x+x
@ Rename bound variables
(M. rz. f(f2)) (hy. y+Xx)
= Az [(y. y+x) (0. y+x) 2))] = Az, z4+x+x

Easy rule: always rename variables to be distinct

1066 and all that

T B A I e L A= Ao B S - R S i Sl

@ 1066 And All That, Sellar & Yeatman, 1930

1066'is a lovely parody of English history books,
"Comprising all the parts you can remember including
one hundred and three good things, five bad kings
and two genuine dates.”

@ Battle of Hastings Oct. 14, 1066
» Battle that ended in the defeat of Harold II of
England by William, duke of Normandy, and
established the Normans as the rulers of England

Main Points about Lambda Calculus

A e L AT P T L L LA L S 8 B S S .

@)\ captures “essence” of variable binding
e Function parameters
¢ Declarations
¢ Bound variables can be renamed
@ Succinct function expressions
@ Simple symbolic evaluator via substitution
@ Can be extended with
e Types
e Various functions

¢ Stores and side-effects
(But we didn't cover these)

Denotational Semantics

L L L L R A R PR L S B A R e L R R P B

@ Describe meaning of programs by specifying the
mathematical

e Function

¢ Function on functions

¢ Value, such as natural numbers or strings
defined by each construct

Original Motivation for Topic
@ Precision
¢ Use mathematics instead of English
@ Avoid details of specific machines
¢ Aim to capture “pure meaning” apart from
implementation details
@ Basis for program analysis
e Justify program proof methods
— Soundness of type system, control flow analysis
¢ Proof of compiler correctness
e Language comparisons

Why study this in CS 242 ?

B o e

@ Look at programs in a different way
@ Program analysis
o Initialize before use, ...
@ Introduce historical debate: functional versus
imperative programming
e Program expressiveness: what does this mean?
* Theory versus practice: we don't have a good

theoretical understanding of programming language
“usefulness”

Basic Principle of Denotational Sem.
Compositionality

¢ The meaning of a compound program must be
defined from the meanings of its parts (ot the
syntax of its parts).

®Examples
*P;Q
composition of two functions, state — state
e letrecf(x) = e ine,
meaning of e, where f denotes function ...

Trivial Example: Binary Numbers
@ Syntax
b= 0|1
n = b|nb
e i= n|ete
@ Semantics value function E : exp -> numbers
Effon=0 Efin=1
Ellnb]]=2*E[[n]] +E[[b]]
Elle+e,]1=Elle 11+ Elle, 1]

Obvious, but different from compiler evaluation using registers, etc.
This is a simple machine-independent characterization ...

Second Example: Expressions w/vars

A e e TR T L L U LA L 8 e R, S S

@ Syntax
d = 0|1]2]..]9
n = d|nd
e = x|nle+e
@ Semantics value E : exp x state -> numbers

state s : vars -> numbers
E[[x]s=s(x
E[[0]]s=0 E[f1]]s=1
Ellnd]]s=10*E[[n]]s+ E[[d]]s
Effe,+e,]ls=Ellells+El[e]ls

Semantics of Imperative Programs
@ Syntax

P::= x:=e | ifBthenPelseP | P;P | while BdoP
@ Semantics

e C: Programs — (State — State)

o State = Variables — Values
would be locations — values if we wanted to model aliasing

Every imperative program can be translated into a functional
program in a relatively simple, syntax-directed way.

Semantics of Assignment

A . B o Tl e RS S 0 R O

Cl[xi=e 1]

is a function states — states

Cl[xx<=e J]s = ¢
where s’ : variables — values is identical to s except
s'(x) =E[[e]]ls gives the value of e in state s

Semantics of Conditional

B o e

C[[ifBthenPelse Q 1]

is a function states — states

C[[ifBthenPelseQ]]s =
C[[P1]sif E[[BI]ls s true
CILQIlsif E[[BI]s is false

Simplification: assume B cannot diverge or have side effects

Semantics of Iteration

2 X R~ AN R o e R et F I

C[[whileBdoP]]

is a function states — states

C[[while Bdo P]] = the function f such that
f(s) =s if E[[B]]s is false
f(s) =f(C[[PJI(s))if E[[BI]s s true
Mathematics of denotational semantics: prove that there

is such a function and that it is uniquely determined.
“Beyond scope of this course.”

Perspective

T B A I e L A= Ao B S - R S i Sl

@ Denotational semantics

¢ Assign mathematical meanings to programs in a
structured, principled way

o Imperative programs define mathematical functions

e Can write semantics using lambda calculus, extended
with operators like

modify : (state x var x value) — state
@ Impact
o Influential theory
o Applications via
abstract interpretation, type theory, ...

Functional vs Imperative Programs

A e e TR T L L U LA L 8 e R, S S

@ Denotational semantics shows

» Every imperative program can be written as a
functional program, using a data structure to
represent machine states

@ This is a theoretical result
e I guess “theoretical” means “it's really true” (?)
@ What are the practical implications?

e Can we use functional programming languages for
practical applications?
Compilers, graphical user interfaces, network routers,

What is a functional language ?

A s L e L P L e R A e L A RN P L

@"No side effects”

0K, we have side effects, but we also have
higher-order functions...

We will use pure functional language to mean
“a language with functions, but without side effects
or other imperative features.”

No-side-effects language test

A . B o Tl e RS S 0 R O

Within the scope of specific declarations of x;,X,, ..., X,
all occurrences of an expression e containing only
variables xy,X,, ..., X,, must have the same value.

®Example
begin
integer x=3; integer y=4;
5*(x+y)-3
I // no new declaration of x ory //
4¥(x+y)+1
end

Example languages
@Pure Lisp
atom, eq, car, cdr, cons, lambda, define
@ Impure Lisp: rplaca, rplacd
lambda (x) (cons
(car x)
(... (rplaca (... x...) ...) ... (carx) ...)
)

Cannot just evaluate (car x) once
Common procedural languages are not functional
e Pascal, C, Ada, C++, Java, Modula, ...
Example functional programs in a couple of slides

Backus’ Turing Award

ks
4 John Backus was designer of Fortran, BNF, etc.
@ Turing Award in 1977
@ Turing Award Lecture
¢ Functional prog better than imperative programming
« Easier to reason about functional programs
¢ More efficient due to parallelism
¢ Algebraic laws

Reason about programs
Optimizing compilers

Reasoning about programs
#To prove a program correct,
e must consider everything a program depends on
@ In functional programs,
« dependence on any data structure is explicit
@ Therefore,
e easier to reason about functional programs
@ Do you believe this?
e This thesis must be tested in practice
* Many who prove properties of programs believe this
* Not many people really prove their code correct

Haskell Quicksort

A e e TR T L L U LA L 8 e R, S S

@ Very succinct program

gsort [] =[]

gsort (x:xs) = gsort elts_It_x ++ [x]

++ gsort elts_greq_x
where elts_It x =[y | y <-xs, y < X]
elts_greq x =[y | y <- xs, y >= x]

@ This is the whole thing

* No assignment — just write expression for sorted list

¢ No array indices, no pointers, no memory
management, ...

Compare: C quicksort

A L L L R L WL L S A e R L R SRR P L

gsort(a, lo, hi) int a[], hi, lo;
{inth, 1, pt;
if (lo < hi) {
| = lo; h = hi; p = a[hi];
do{
while ((I < h) && (a[l] <=p)) | = I+1;
while ((h > I) & (a[h] >= p)) h = h-1;
if (I <h){t=all]; afl] = a[h]; a[h] = t; }
} while (I < h);
t = a[l]; a[l] = a[hi]; a[hi] = t;
gsort(a, lo, I-1);
gsort(a, I+1, hi);

Hudak and Jones,

Interesting case study “actiesy ren repor, 105

A . X B B R R T T

Naval Center programming experiment
* Separate teams worked on separate languages
* Surprising differences

Some programs were incomplete or did not run

¢ Many evaluators didn't understand, when shown the code, that
the Haskell program was complete. They thought it was a high
level partial specification.

Disadvantages of Functional Prog

B o e

Functional programs often less efficient. Why?

(Al e e[o[—

Change 3rd element of list x to y

(cons (car x) (cons (cadr x) (cons y (cdddr x))))
— Build new cells for first three elements of list
(rplaca (cddr x) y)
— Change contents of third cell of list directly

However, many optimizations are possible

Von Neumann bottleneck
#Von Neumann
* Mathematician responsible for idea of stored program
#Von Neumann Bottleneck
e Backus’ term for limitation in CPU-memory transfer
@ Related to sequentiality of imperative languages
¢ Code must be executed in specific order

function f(x) { if x<y then y:=x else x:=y };

a(f(0), fG));

Eliminating VN Bottleneck
@ No side effects
* Evaluate subexpressions independently
e Example
— function f(x) {if x<ythen 1lelse2};
- g(f(i), fG), k), ...);
@ Does this work in practice? Good idea but ...
e Too much parallelism
o Little help in allocation of processors to processes

e David Shaw promised to build the non-Von ...
@ Effective, easy concurrency is a hard problem

Summary

A e e TR T L L U LA L 8 e R, S S

@ Parsing

¢ The “real” program is the disambiguated parse tree
@ Lambda Calculus

« Notation for functions, free and bound variables

¢ Calculate using substitution, rename to avoid capture
@ Denotational semantics

« Every imperative program is equivalent to a
functional program

@ Pure functional program
¢ May be easier to reason about
e Parallelism: easy to find, too much of a good thing

L L L L R A R PR L S B A R e L R R P B

