
1

Programming Languages

John Mitchell

CS 242

Course web site: http://www.stanford.edu/class/cs242/

A little about myself …

John C. Mitchell
Professor of Computer Science
Research Interests: Computer security: access
control, cryptographic protocols and mobile code
security. Programming languages, type systems,
object systems, and formal methods. Applications of
logic to CS.

B.S. Stanford University; M.S., Ph.D. MIT.

How I spend my time
• Working with graduate students
• Writing papers, going to conferences, giving talks
• Departmental committees (hiring, curriculum, …)
• Teaching classes
• Conferences, journals, consulting, companies, …

Course Goals

Programming Language Culture
• A language is a “conceptual universe” (Perlis)

– Learn what is important about various languages
– Understand the ideas and programming methods

• Understand the languages you use (C, C++, Java) by
comparison with other languages

• Appreciate history, diversity of ideas in programming
• Be prepared for new problem-solving paradigms

Critical thought
• Properties of language, not documentation

Language and implementation
• Every convenience has its cost

– Recognize the cost of presenting an abstract view of machine
– Understand trade-offs in programming language design

Transference of Lang. Concepts

Parable
• I started programming in 1970’s

– Dominant language was Fortran; no recursive functions

• My algorithms and data structure instructor said:
– Recursion is a good idea even though inefficient
– You can use idea in Fortran by storing stack in array

• Today: recursive functions everywhere

Moral
• World changes; useful to understand many ideas

More current example: function passing
• Pass functions in C by building your own closures, as in STL

“function objects”

Alternate Course Organizations

Language-based organization
• Algol 60, Algol 68, Pascal
• Modula, Clu, Ada
• Additional languages grouped by paradigm

– Lisp/Scheme/ML for functional languages
– Prolog and Logic Programming
– C++, Smalltalk and OOP
– Concurrency via Ada rendez-vous

My opinion:
Algol/Pascal/Modula superseded by ML
Lisp/Scheme ideas also in ML
OOP deserves greater emphasis

For comparison, see Sethi’s book ...

Alternate Course II

Concept-based organization
• Use single language like Lisp/Scheme
• Present PL concepts by showing how to define them

Advantages:
• uniform syntax, easy to compare features

Disadvantages
• Miss a lot of the culture associated with languages
• Some features hard to add

– Type systems, program-structuring mechanisms
– Works best for “local” features, not global structure

Examples: Abelson/Sussman, Friedman et al.

2

Organization of this course

Programming in the small
• Cover traditional Algol, Pascal constructs in ML

– Block structure, activation records
– Types and type systems, ...

• Lisp/Scheme concepts in ML too
– higher-order functions and closures, tail recursion
– exceptions, continuations

Programming in the large
• Modularity and program structure
• Specific emphasis on OOP

– Smalltalk vs C++ vs Java
– Language design and implementation

Course Organization (cont’d)

Concurrent and distributed programming
• General issues in concurrent programming
• Actor languages: an attempt at idealization
• Concurrent ML
• Java threads

But what about C?
• Important, practical language
• We discuss other languages, you compare them to C in

your head as we go (and in homework)
– Should we cover more? “Intro to C for Java programmers”?

• We do cover the ++ part of C++ in detail

C

Programming language toolsets

Other languages

If all you have is
a hammer,
then everything
looks like a nail.

Aside

Current view from carpenters

“A hammer is more than just a hammer.
It's a personal tool that you get used to
and you form a loyalty with. It becomes
an extension of yourself."

http://www.hammernet.com/romance.htm

First half of course

Lisp (2 lectures)
Foundations (2 lectures)
• Lambda Calculus
• Denotational Semantics
• Functional vs Imperative Programming

Conventional prog. language concepts (6 lectures)
• ML/Algol language summary (1 lecture)
• Types and type inference (1 lecture)
• Block structure and memory management (2 lectures)
• Control constructs (2 lectures)

--------------------- Midterm Exam ------------------------

Second half of course

Modularity and data abstraction (1 lecture)
Object-oriented languages (6 lectures)
• Introduction to objects (1 lecture)
• Simula and Smalltalk (2 lectures)
• C++ (1.5 lectures)
• Java (1.5 lectures)

Concurrent and distributed programming (1 lecture)
Conclusions and review (1 lecture)

--------------------- Final Exam ------------------------

3

General suggestions

Read ahead
• Some details are only in HW and reading

There is something difficult about this course
• May be hard to understand homework questions

Thought questions: cannot run and debug
May sound like there is no right answer, but some answers are

better than others

• Many of you may be used to overlooking language
problems, so it takes a few weeks to see the issues

Course Logistics

Homework and Exams
• HW handed out and due on Wednesdays
• Midterm Wed Oct 29 7-9PM, Final Monday Dec 8, 8:30AM
• Honor Code, Collaboration Policy

TA’s, Office hours, Email policy, …
Section
• Friday 1:15-2:30 in Terman 156
• Optional discussion and review; no new material

Reading material
• Book available in bookstore (I hope).

Look at web site…

Foundations: Partial,Total Functions

Value of an expression may be undefined
• Undefined operation, e.g., division by zero

– 3/0 has no value
– implementation may halt with error condition

• Nontermination
– f(x) = if x=0 then 1 else f(x-2)
– this is a partial function: not defined on all arguments
– cannot be detected at compile-time; this is halting problem

• These two cases are
– “Mathematically” equivalent
– Operationally different

Partial and Total Functions

• Total function: f(x) has a value for every x
• Partial function: g(x) does not have a value for every x

x

g(x)

f(x)

Functions and Graphs

• Graph of f = { 〈x,y〉 | y = f(x) }
• Graph of g = { 〈x,y〉 | y = g(x) }

Mathematics: a function is a set of ordered pairs (graph of function)

x

g(x)

f(x)

Partial and Total Functions

Total function f:A→B is a subset f ⊆ A×B with
• For every x∈A, there is some y∈B with 〈x,y〉 ∈ f (total)
• If 〈x,y〉 ∈ f and 〈x,z〉 ∈ f then y=z (single-valued)

Partial function f:A→B is a subset f ⊆ A×B with
• If 〈x,y〉 ∈ f and 〈x,z〉 ∈ f then y=z (single-valued)

Programs define partial functions for two reasons
• partial operations (like division)
• nontermination

f(x) = if x=0 then 1 else f(x-2)

4

Halting Problem

Entore Buggati: "I build
cars to go, not to stop."

Self-Portrait in the Green Buggati (1925)
Tamara DeLempicka

Computability

Definition
Function f is computable if some program P computes it:

For any input x, the computation P(x) halts with output f(x)

Terminology
Partial recursive functions
= partial functions (int to int) that are computable

Halting function

Decide whether program halts on input
• Given program P and input x to P,

Halt (P,x) =

Fact: There is no program for Halt

yes if P(x) halts
no otherwise

Clarifications
Assume program P requires one string input x
Write P(x) for output of P when run in input x
Program P is string input to Halt

Unsolvability of the halting problem

Suppose P solves variant of halting problem
• On input Q, assume

P(Q) =
Build program D

• D(Q) =

Does this make sense? What can D(D) do?
• If D(D) halts, then D(D) runs forever.
• If D(D) runs forever, then D(D) halts.
• CONTRADICTION: program P must not exist.

yes if Q(Q) halts
no otherwise

run forever if Q(Q) halts
halt if Q(Q) runs forever

Main points about computability

Some functions are computable, some are not
• Halting problem

Programming language implementation
• Can report error if program result is undefined due

to division by zero, other undefined basic operation
• Cannot report error if program will not terminate

Announcements

Topics you’d like to see?

Homework grader?
• Send email to cs242@cs email addr (operational shortly)

Something for fun
• Nominate theme song for each

programming language or course topic

Questions???

