
1

C++

John Mitchell

CS 242
History

uC++ is an object-oriented extension of C
uC was designed by Dennis Ritchie at Bell Labs

• used to write Unix

• based on BCPL

uC++ designed by Bjarne Stroustrup at Bell Labs
• His original interest at Bell was research on simulation
• Early extensions to C are based primarily on Simula

• Called “C with classes” in early 1980’s
• Popularity increased in late 1980’s and early 1990’s

• Features were added incrementally
Classes, templates, exceptions, multiple inheritance, type tests ...

Design Goals

uProvide object-oriented features in C-based 
language, without compromising efficiency
• Backwards compatibility with C 

• Better static type checking
• Data abstraction

• Objects and classes
• Prefer efficiency of compiled code where possible

uImportant principle
• If you do not use a feature, your compiled code 

should be as efficient as if the language did not 
include the feature.             (compare to Smalltalk)

How successful?

uGiven the design goals and constraints, 
• this is a very well-designed language

uMany users -- tremendous popular success
uHowever, very complicated design

• Many specific properties with complex behavior

• Difficult to predict from basic principles
• Most serious users chose subset of language 

– Full language is complex and unpredictable

• Many implementation-dependent properties

• Language for adventure game fans

Email discussion group comment

... in my group ... we do use C++ regularly and find 
it very useful but certainly not perfect.  Every full 
moon, however, we sacrifice a virgin disk to the 
language gods in hopes that the True Object-
Oriented Language will someday be manifest on 
earth, or at least on all major platforms. : -)

Rick Pember, LLNL

Further evidence

uMany style guides for using C++ “safely”
uEvery group I’ve ever talked to has established 

some conventions and prohibitions among 
themselves.
• CORBA -- don’t inherit implementation

• SGI compiler group -- no virtual functions
• Others -- ???

See Cargill’s book, etc.



2

Significant constraints

uC has specific machine model
• Access to underlying architecture

uNo garbage collection
• Consistent with goal of efficiency
• Need to manage object memory explicitly

uLocal variables stored in activation records
• Objects treated as generalization of structs, so some 

objects may be allocated on stack
• Stack/heap difference is visible to programmer

Overview of C++

uAdditions and changes not related to objects
• type bool

• pass-by -reference
• user-defined overloading

• function templates
• …

C++ Object System

uObject-oriented features
• Classes

• Objects, with dynamic lookup of virtual functions
• Inheritance

– Single and multiple inheritance
– Public and private base classes

• Subtyping 
– Tied to inheritance mechanism

• Encapsulation

Some good decisions

uPublic, private, protected levels of visibility
• Public: visible everywhere

• Protected: within class and subclass declarations
• Private: visible only in class where declared

uFriend functions and classes
• Careful attention to visibility and data abstraction

uAllow inheritance without subtyping
• Better control of subtyping than without private base 

classes

Some problem areas
u Casts

• Sometimes no-op, sometimes not (esp multiple inher)

u Lack of garbage collection
• Memory management is error prone

– Constructors, destructors are helpful though

u Objects allocated on stack
• Better efficiency, interaction with exceptions
• BUT assignment works badly, possible dangling ptrs

u Overloading
• Too many code selection mechanisms

u Multiple inheritance
• Efforts at efficiency lead to complicated behavior

Sample class: one-dimen. points

class Pt {

public:
Pt(int xv);

Pt(Pt* pv );
int getX();

virtual void move(int dx);

protected:
void setX(int xv);

private:
int x;                

};

Overloaded constructor

Public read access to private data

Virtual function

Protected write access 

Private member data 



3

Virtual functions

uMember functions are either
• Virtual, if explicitly declared or inherited as virtual

• Non-virtual otherwise

uVirtual members
• Are accessed by indirection through ptr in object

• May be redefined in derived (sub) classes

uNon-virtual functions
• Are called in the usual way. Just ordinary functions.
• Cannot redefine in derived classes (except overloading) 

uPay overhead only if you use virtual functions

Sample derived class

class ColorPt: public Pt {   
public:

ColorPt(int xv,int cv );
ColorPt(Pt*  pv,int cv );
ColorPt(ColorPt* cp);
int getColor();
virtual void move(int dx);
virtual void darken(int tint);

protected:
void setColor(int cv );

private:
int color;

};

Public base class gives supertype

Overloaded constructor

Non-virtual function

Virtual functions

Protected write access

Private member data

Run-time representation

3

5
blue

Point object

ColorPoint object

x
vptr

x
vptr

c

Point vtable

ColorPoint vtable

Code for move

Code for move

Code for darken

Data at same offset Function pointers at same offset

Compare to Smalltalk

2
3

x
y newX:Y:

...
move

Point object Point class Template
Method dictionary

...

4
5

x
y newX:Y:C:

color
move

ColorPoint object
ColorPoint class Template

Method dictionary

red

color

Why is  C++  lookup simpler?

uSmalltalk has no static type system
• Code  p  message:pars  could refer to any object

• Need to find method using pointer from object
• Different classes will put methods at different place in 

method dictionary

uC++ type gives compiler some superclass
• Offset of data, fctn ptr same in subclass and superclass
• Offset of data and  function ptr known at compile time

• Code p->move(x) compiles to  equivalent of
(*(p->vptr[1]))(p,x) if move is first fctn in vtable. 

data passed to member function; see next slide

Calls to virtual functions

uOne member function may call another
class A {

public:
virtual  int f (int x);
virtual  int g(int y);

};
int A::f(int x) { … g(i) …;}
int A::g(int y) { … f(j) …;}

uHow does body of f call the right g?
• If g is redefined in derived class B, then inherited f 

must call B::g



4

“This” pointer (analogous to self in Smalltalk)

uCode is compiled so that member function takes 
“object itself” as first argument

Code              int A::f(int x) { … g(i) …;}

compiled as int A::f(A *this, int x) { … this->g(i) …;}

u“this” pointer may be used in member function
• Can be used to return pointer to object itself, pass 

pointer to object itself to another function, ...

Non-virtual functions

uHow is code for non-virtual function found?
uSame way as ordinary “non-member” functions:

• Compiler generates function code and assigns address

• Address of code is placed in symbol table
• At call site, address is taken from symbol table and 

placed in compiled code

• But some special scoping rules for classes

uOverloading
• Remember: overloading is resolved at compile time

• This is different from run-time lookup of virtual function

Scope rules in C++

uScope qualifiers
• binary :: operator, ->, and .

• class::member,  ptr->member, object.member

uA name outside a function or class, 
• not prefixed by unary :: and not qualified refers to 

global object, function, enumerator or type.

uA name after X::, ptr-> or obj.
• where we assume ptr is pointer to class X and obj is 

an object of class X
• refers to a member of class X or a base class of X

Virtual vs Overloaded Functions

class parent { public:
void printclass() {printf("p ");};
virtual void printvirtual() {printf("p ");};   };

class child : public parent { public:
void printclass() {printf("c ");};
virtual void printvirtual() {printf("c ");};    };

main() {
parent p;  child c; parent *q;
p.printclass(); p.printvirtual(); c.printclass(); c.printvirtual();

q = &p;  q->printclass(); q->printvirtual();
q = &c;  q->printclass(); q->printvirtual();

}
Output:  p  p  c  c  p  p  p  c

Subtyping

uSubtyping in principle
• A <: B if every A object can be used without type 

error whenever a B object is required
• Example:

Point:           int getX(); 
void move(int);

ColorPoint:    int getX(); 
int getColor();
void move(int);
void darken(int tint);

uC++:  A <: B if class A has public base class B
• This is weaker than necessary  Why?

Public members

Public members

Independent classes not subtypes

class Point {
public:

int getX();
void move(int);

protected:    ...
private:        ...                

};

class ColorPoint {   
public:

int getX();
void move(int);
int getColor();
void darken(int);

protected:    ...
private:        ...              

};

uC++ does not treat ColorPoint <: Point   as written

• Need public inheritance  ColorPoint : public Pt       

• Why??



5

Why C++ design?

uClient code depends only on public interface
• In principle, if ColorPoint interface contains Point 

interface, then any client could use ColorPoint in 
place of point

• However -- offset in virtual function table may differ

• Lose implementation efficiency   (like Smalltalk)

uWithout link to inheritance
• subtyping leads to loss of implementation efficiency

uAlso encapsulation issue:
• Subtyping based on inheritance is preserved under 

modifications to base class …

Function subtyping

uSubtyping principle
• A <: B if an A expression can be safely used in any 

context where a B expression is required

uSubtyping for function results   
• If A <: B,   then   C → A   <:   C → B

uSubtyping for function arguments
• If A <: B,   then   B → C   <:   A → C

uTerminology
• Covariance:       A <: B implies  F(A)   <:   F(B)

• Contravariance:  A <: B implies  F(B)   <:   F(A)

Examples

uIf circle <: shape,  then

C++ compilers recognize limited forms of function subtyping

circle → shape   

shape → shape  circle → circle  

shape → circle

Subtyping with functions

uIn principle: can have ColorPoint <: Point

uIn practice: some compilers allow, others have not
This is covariant case; contravariance is another story

class Point {
public:

int getX();
virtual Point *move(int);

protected:    ...
private:        ...                

};

class ColorPoint: public Point {   
public:

int getX();  
int getColor();
ColorPoint * move(int);
void darken(int);

protected:    ...
private:        ...              

};

Inherited, but repeated 
here for clarity

Details, details

uThis is legal
class Point { …   

virtual Point * move(int); 
…   }
class ColorPoint: public Point {   …  

virtual ColorPoint * move(int);
…  }

uBut not legal if *’s are removed
class Point { …   virtual Point move(int); … }
class ColorPoint: public Point { …virtual ColorPoint move(int);… }

Related to subtyping distinctions for object L-values and object R-values 

(Non-pointer return type is treated like an L-value for some reason)

Subtyping and Object L,R-Values

uIf    class B : public A { … }
Then
• B r-value <:  A r-value

– If x = a is OK, then x = b is OK
provided A’s operator = is public

– If f(a) is OK, then f(b) is OK
provided A’s copy constructor is public

• B l-value  <:  A l-value 
• B*  <:  A*

• B** <: A**
Generally,   X <: Y  à X*  <: Y*  is unsound.



6

Review

uWhy C++ requires inheritance for subtyping
• Need virtual function table to look the same

• This includes private and protected members
• Subtyping w/o inheritance weakens data abstraction 
(This is my post facto explanation; I don’t know what designers think.)

u Possible confusion regarding inlining
• Cannot generally inline virtual functions
• Inlining is possible for nonvirtual functions

– These are available in C++
– Not in Smalltalk since every lookup is through class

Inlining is very significant for efficiency; enables further optimization.

Abstract Classes

uAbstract class: 
• A class without complete implementation

• Declare by =0    (what a great syntax!)
• Useful because it can have derived classes

Since subtyping follows inheritance in C++, use abstract 
classes to build subtype hierarchies.

• Establishes layout of virtual function table (vtable)

uExample
• Geometry classes in appendix of reader

– Shape is abstract supertype of circle, rectangle, ...

Multiple Inheritance

Inherit independent functionality from independent classes

Shape ReferenceCounted

RefCounted

Rectangle

Rectangle

Problem: Name Clashes

class A { 
public:

void virtual f() { … }
};
class B { 

public:
void virtual f() { … }

};
class C : public A, public B { … };
…

C* p;
p->f();     // error 

same name 
in 2 base 
classes

Possible solutions to name clash

uThree general approaches
• Implicit resolution

– Language resolves name conflicts with arbitrary rule

• Explicit resolution
– Programmer must explicitly resolve name conflicts 

• Disallow name clashes
– Programs are not allowed to contain name clashes

uNo solution is always best
uC++ uses explicit resolution

Repair to previous example

uRewrite class C to call A::f explicitly
class C : public A, public B {

public:
void virtual f( ) {

A::f( );    // Call A::f(), not B::f();
}

uReasonable solution
• This eliminates ambiguity

• Preserves dependence on A
– Changes to A::f will change C::f 



7

vtable for Multiple Inheritance 

class A {
public:

int x;
virtual void f();

};
class B {

public:
int y ;

virtual void g(); 
virtual void f();       

};

class C: public A, public B {
public:

int z;
virtual void f();

};

C *pc = new C;
B * pb = pc;

A *pa = pc;
Three pointers to same object, 
but different static types.

Object and classes

u Offset δ in vtbl is used in call to pb->f, since C::f may 
refer to A data that is above the pointer pb

u Call to pc->g can proceed through C-as-B vtbl

C object

C

A B

vptr

B data

vptr

A data

C data

B object

A object
& C::f 0

C -as-A  vtbl

C -as-B vtbl

& B::g 0

& C::f δ

δ
pa, pc

pb

Multiple Inheritance “Diamond”

uIs interface or implementation inherited twice?
uWhat if definitions conflict?

Window (D)

Text Window (A) Graphics Window (B)

Text, Graphics

Window (C)

Diamond inheritance in C++

uStandard base classes
• D members appear twice in C

uVirtual base classes
class A : public virtual D { … }

• Avoid duplication of base 
class members

• Require additional pointers so 
that D part of A, B parts of 
object can be shared

C

A B

D

uC++ multiple inheritance is complicated in part 
because of desire to maintain efficient lookup

A part

D part

C part

B part

C++ Summary

uObjects
• Created by classes

• Contain member data and pointer to class

uClasses: virtual function table

uInheritance
• Public and private base classes, multiple inheritance

uSubtyping: Occurs with public base classes only

uEncapsulation
• member can be declared public, private, protected
• object initialization partly enforced


