
Study Questions

Handout 9
CS242: Autumn 2004

24 November

Reading

1. Read chapter 14 on concurrency.

Problems

1. Fairness
The guarded-command looping construct

do
Condition ⇒ Command
. . .
Condition ⇒ Command

od

involves nondeterministic choice, as explained in the text. An important theoretical concept
related to potentially nonterminating nondeterministic computation is fairness. If a loop repeats
indefinitely, then fair nondeterministic choice must eventually select each command whose guard
is true. For example, in the loop

do
true ⇒ x := x+1
true ⇒ x := x-1

od

both commands have guards that are always true. It would be unfair to execute x := x+1 re-
peatedly without ever executing x := x-1 . Most language implementations are designed to
provide fairness, usually by providing a bounded form. For example, if there are n guarded com-
mands, then the implementation may guarantee that each enabled command will be executed at
least once in every 2n or 3n times through the loop. Since the number 2n or 3n is implementation
dependent, though, programmers should only assume that each command with a true guard will
eventually be executed.

(a) Suppose that an integer variable x can only contain an integer value with absolute value
less than INTMAX. Will the do ... od loop above cause overflow or underflow under a
fair implementation? What about an implementation that is not fair?

(b) What property of the following loop is true under a fair implementation but false under an
unfair implementation?

go := true;
n := 0;
do

go => n := n+1
go => g := false

od

(c) Is fairness easier to provide on a single-processor language implementation or a multipro-
cessor? Discuss briefly.

1

2. Actor computing
The Actor mail system provides asynchronous buffered communication and does not guarantee
that messages (tasks in Actor terminology) are delivered in the order they are sent. Suppose actor
A sends tasks t1, t2, t3, . . . to actor B and we want actor B to process tasks in the order A sends
them.

(a) What extra information could be added to each task so that B can tell whether it receives
a task out of order? What should B do with a task when it first receives it, before actually
performing the computation associated with the task?

(b) Since the Actor model does not impose any constraints on how soon a task must be delivered,
a task could be delayed an arbitrary amount of time. For example, suppose actor A sends
tasks t1, t2, t3, . . . , t100 and actor B receives the tasks t1, t3, . . . , t50 without receiving task t2.
Since B would like to proceed with some of these tasks, it makes sense for B to ask A to
resend task t2. Describe a protocol for A and B that will add resend requests to the approach
you described in part (a) of this problem.

(c) Suppose B wants to do a final action when A has finished sending tasks to B. How can A
notify B when A is done? Be sure to consider the fact that if A sends I’m done to B after
sending task t100, the I’m done message may arrive before t100.

3. Message Passing
There are eight message-passing combinations involving synchronization, buffering, and mes-
sage order, as shown in the following table.

Synchronous Asynchronous
Ordered Unordered Ordered Unordered

Buffered
Unbuffered

For each combination, give a programming language that uses this combination and explain
why the combination makes some sense, or explain why you think the combination is either
meaningless or too weak for useful concurrent programming.

4. Concurrent ML events
The Concurrent ML recv function can be defined from recvEvt by

fun recv(ch) = sync (recvEvt (ch));

as shown in the text. Give a similar definition of send using sendEvt and explain your definition
in a few sentences.

5. Java memory model
This program with two threads is discussed in the text.

x = 0; y = 0;
Thread 1: a = x; y = 1;
Thread 2: b = y; x = 1;

Draw a box-and-arrow illustration showing the order constraints on the memory actions (read,
load, use, assign, store, write) associated with the four assignments that appear in the two
threads. (You do not need to show these actions for the two assginments setting x and y to
0.)

(a) Without prescient stores.
(b) With prescient stores.

2

6. Java ConcurrentHashMap
ConcurrentHashMap allows concurrent access to a hash table with minimal locking. Without
going into all of the details, this problem asks you to think about some aspects of the design. The
relatively tricky design of ConcurrentHashMap is intended to allow read access to parts of the
data structure that may be written concurrently, in a way that causes the read to try again if the
state seems inconsistent or incomplete.
The hash table implementation uses a resizable array of hash buckets, each consisting of a linked
list of Map.Entry elements. As with other hash table implementations you may be familiar with,
the hashcode of an entry determines its bucket; when several entries hash to the same bucket,
they are placed in a linked list. Here is part of the definition of a Map.Entry class.

protected static class Entry implements Map.Entry {
protected final Object key;
protected volatile Object value;
protected final int hash;
protected final Entry next;
...

}

The volatile modifier asks the Java Virtual Machine to order accesses to the shared copy of the
variable so that its most current value is always read.
Instead of a single lock governing access to the entire collection, ConcurrentHashMap uses a lock
over each segment of buckets. The linked list used by ConcurrentHashMap is designed so that
the implementation can detect that its view of the list is inconsistent or stale. If it detects that its
view is inconsistent or stale, or simply does not find the entry it is looking for, it then synchronizes
on the appropriate bucket lock and searches the chain again.

(a) What does the use of final in the Map.Enty class tell you about the way a linked list of
Map.Entry elements may change when a ConcurrentHashMap is updated? (Don’t think too
deeply - the purpose of this question is to point out something that is important for later
questions.)

(b) There is one straightforward way to remove an item from a linked list of Map.Enty objects.
Describe the steps involved in removing the second item from a list. Assume the pointer to
the beginning of the list is mutable. (Hint: Pure Lisp.)

(c) A problem with the Java Memory Model (now being updated) is that a thread may access
part of an object before the thread running the constructor completes. The implementation
of ConcurrentHashMap uses default values for final fields that are zero or null; these values
are overwritten by the constructor. This lets a concurrent thread test whether the construc-
tor has set meaningful values in final fields. Assume that a thread searching the list for a
data value does not initially synchronize on the lock for this list. (The reason not to lock the
list is to allow greater concurrency.) What should the thread do if it sees the default values?

(d) The ConcurrentHashMap retrieval operations first find the head pointer for the desired
bucket. This is done without locking, so the value of the head pointer could be stale. The op-
eration then traverses the linked list representing the bucket starting from the head pointer,
without acquiring the lock for that bucket. If the operation does not find the value it is look-
ing for, it acquires the lock for the bucket and tries again. Here is the code, in case you want
to look at it; you may be able to answer the question without reading the code.

int hash = hash(key); // throws null pointer exception if key is null

// Try first without locking...
Entry[] tab = table;
int index = hash & (tab.length - 1);
Entry first = tab[index];

3

Entry e;

for (e = first; e != null; e = e.next) {
if (e.hash == hash && eq(key, e.key)) {

Object value = e.value;
// null values means that the element has been removed
if (value != null)

return value;
else

break;
}

}

// Recheck under synch if key apparently not there or interference
Segment seg = segments[hash & SEGMENT_MASK];
synchronized(seg) {

tab = table;
index = hash & (tab.length - 1);
Entry newFirst = tab[index];
if (e != null || first != newFirst) {

for (e = newFirst; e != null; e = e.next) {
if (e.hash == hash && eq(key, e.key))

return e.value;
}

}
return null;

}
}

Why do the second traversal? What advantage does this two-pass algorithm have over sim-
ply locking the linked list the first time and doing only one traversal?

(e) Removing an element from a ConcurrentHashmap poses several problems. First, because
a thread could see stale values for the link pointers in a hash chain, simply removing an
element from the chain would not be sufficient to ensure that other threads will not continue
to see the removed value when performing a lookup. However, there’s a clue to how the
implementation works in the get code above – the appropriate Entry object is found and its
value field is set to null. Then the algorithm you may have discovered in part (b) is used.
Explain why declaring the value field as volatile is useful here.

4

