
Homework 6
Due 17 November

Handout 7
CS242: Autumn 2004

10 November

Reading

1. Finish reading Chapter 11 on Simula and Smalltalk.

2. Read Chapter 12 on C++.

Problems

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Smalltalk Implementation Decisions
In Smalltalk, each class contains a pointer to the class template. This template stores the names
of all the instance variables that belong to objects created by the class.

(a) The names of the methods are stored next to the method pointers. Why are the names of
instance variables stored in the class, instead of in the objects (next to the values for the
instance variables)?

(b) Each class’s method dictionary only stores the names of the methods explicitly written for
that class; inherited methods are found by searching up the superclass pointers at run-
time. What optimization could be done if each subclass contained all of the methods of its
superclasses in its method dictionary? What are some of the advantages and disadvantages
of this optimization?

(c) The class template stores the names of all the instance variables, even those inherited from
parent classes. These are used to compile the methods of the class. Specifically, when a
subclass is added to a Smalltalk system, the methods of the new class are compiled so that
when an instance variable is accessed, the method can access this directly without searching
through the method dictionary and without searching through superclasses. Can you see
some advantages and disadvantages of this implementation decision, in comparison with
looking up the relative position of an instance variable in the appropriate class template
each time the variable is accessed? Keep in mind that in Smalltalk, a set of classes could re-
main running for days, while new classes are added incrementally and, conceivably, existing
classes could be rewritten and recompiled.

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protocol Conformance
We can compare Smalltalk interfaces to classes using protocols, which are lists of operation names
(selectors). When a selector allows parameters, as in at: put: , the selector name includes
the colons but not the spaces. More specifically, if dict is an updatable collection object, such as
a dictionary, then we could send dict a message by writing dict at:’cross’ put:’angry’.
(This makes our dictionary definition of “cross” the single word “angry.”) The protocol for up-
datable collections will therefore contain the seven-character selector name at:put: . Here are
some example protocols.

stack : {isEmpty, push:, pop }
queue : {isEmpty, insert:, remove }

priority queue : {isEmpty, insert:, remove }
dequeue : {isEmpty, insert:,insertFront:, remove, removeLast }

simple collection : {isEmpty }
Briefly, a stack can be sent the message isEmpty , returning true if empty, false otherwise;
push: requires an argument (the object to be pushed onto the stack), pop removes the top el-
ement from the stack and returns it. Queues work similarly, except they are first-in/first-out
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instead of first-in/last-out. Priority queues are first-in/minimum-out and dequeues are doubly-
ended queues with the possibility of adding and removing from either end. The simple collection
class just collects methods that are common to all the other classes. We say that the protocol for
A conforms to the protocol for B if the set of A selector names contains the set of B selector names.

(a) Draw a diagram of these classes, ordered by protocol conformance. You should end up with
a graph that look’s like William Cook’s drawing shown in the text.

(b) Describe briefly, in words, a way of implementing each class so that you only make B a
subclass of A if the protocol for B conforms to the protocol set for A.

(c) For some classes A and B that are unrelated in the graph, describe a strategy for implement-
ing A as a subclass of B in a way that keeps them unrelated.

(d) Describe implementation strategies for two classes A and B (from the set of classes above) so
that B is a subclass of A, but A conforms to B, not the other way around.

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Removing a Method
Smalltalk has a mechanism for “undefining” a method. Specifically, if a class A has method m
then a programmer may cancel min subclass B by writing

m:
self shouldNotImplement

With this declaration of min subclass B, any invocation of mon a B object will result in a special
error indicating that the method should not be used.

(a) What effect does this feature of Smalltalk have on the relationship between inheritance and
subtyping?

(b) Suppose class A has methods mand n, and method mis canceled in subclass B. Method n is
inherited and not changed, but method n sends the message mto self . What do you think
happens if a B object b is sent a message n? There are two possible outcomes. See if you
can identify both, and explain which one you think the designers of Smalltalk would have
chosen and why.

4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assignment and Derived Classes
This problem exams the difference between two forms of object assignment. In C++, local vari-
ables are stored on the run-time stack, while dynamically allocated data (created using the new
keyword) is stored on the heap. A local object variable allocated on the stack has an object L-value
and an R-value. Unlike many other object-oriented languages, C++ allows object assignment into
object L-values.
A C++ programmer writes the following code:

class Vehicle {
public:

int x;
virtual void f();
void g();

};

class Airplane : public Vehicle {
public:

int y;
virtual void f();
virtual void h();
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};

void inHeap() {
Vehicle *b1 = new Vehicle; // Allocate object on the heap
Airplane *d1 = new Airplane; // Allocate object on the heap
b1->x = 1;
d1->x = 2;
d1->y = 3;
b1 = d1; // Assign derived class object to base class pointer

}

void onStack() {
Vehicle b2; // Local object on the stack
Airplane d2; // Local object on the stack
b2.x = 4;
d2.x = 5;
d2.y = 6;
b2 = d2; // Assign derived class object to base class variable

}

int main() {
inHeap();
onStack();

}

(a) Draw a picture of the stack, heap and vtables that result after objects b1 and d1 have been
allocated (but before the assignment b1=d1 ) during the call to inHeap . Be sure to indicate
where the instance variables and vtable pointers of the two objects are stored before the
assignment b1=d1, and to which vtables the respective vtable pointers point.

(b) Re-draw your diagram from (a), showing the changes that result after the assignment b1=d1 .
Be sure to clearly indicate where b1 ’s vtable pointer points after the assignment b1=d1.

Explain why b1 ’s vtable pointer points where it does after the assignment b1=d1.

(c) Draw a picture of the stack, heap and vtables that result after objects b2 and d2 have been
allocated (but before the assignment b2=d2 ) during the call to onStack . Be sure to indicate
where the instance variables and vtable pointers of the two objects are stored before the
assignment b2=d2, and to which vtables the respective vtable pointers point.

(d) In C++, assignment to objects (such as b2=d2 ) is performed by copying into all the left
object’s data members (b2 ’s in our example) from the right object’s (d2 ’s) corresponding data
members. If the right object contains data members not present in the left object, then those
data simply aren’t copied. In b2=d2 this means overwriting all b2’s data members with the
corresponding value from d2.

i. Re-draw your diagram from (c), showing the changes that result after the assignment
b2=d2 .

ii. Explain why it isn’t sensible to copy all of d2’s member data into b2’s record.
iii. Explain why b2’s vtable pointer isn’t changed by the assignment.

(e) We have used assignment statements b1=d1 and b2=d2 . Why are the opposite statements
d1=b1 and d2=b2 not allowed?

5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subtyping and Public Data
This question asks you to review the issue of specializing the types of public member functions
and consider the related issue of specializing the types of public data members. To make this
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question concrete, we will use the example of circles and colored circles in C++. Colored circles
get darker each time they are moved. We assume there is a class Point of points and class
ColPoint of colored points with appropriate operations. Class Point is a public base class of
ColPoint. The basic definition for circle is:

class Circle {
public:

Circle(Point* c, float r) { center=c; radius=r; }

Point* center;
float radius;
virtual Circle* move(float dx, float dy)

{center->move(dx,dy); return(this);}
};

For each of the following definitions of colored circle, explain why a colored circle should or should
not be considered a subtype of a circle, in principle. If a colored circle should not be a subtype,
give some fragment of code that would be type correct if we considered colored circles to be a
subtype of circles, but would lead to a type error at run time.

(a) class ColCircle : public Circle {
public:

ColCircle(Point* c, float r, color cl) : Circle(c,r) { col=cl; }

color col;
virtual Circle* move(float dx, float dy)

{center->move(dx,dy); darken(); return(this);}
virtual void darken()

{if (col==green) col=darkgreen;}
};

(b) Suppose we change the definition of ColCircle so that move returns a colored circle.

class ColCircle : public Circle {
public:

ColCircle(Point* c, float r, color cl) : Circle(c,r) { col=cl; }

color col;
virtual ColCircle* move(float dx, float dy)

{center->move(dx,dy); darken(); return(this);}
virtual void darken()

{if (col==green) col=darkgreen;}
};

(c) Suppose that instead of representing the color of a circle by a separate data member, we
replace points by colored points and use a colored point for the center of the circle. One
advantage of doing so is that we can use all of the color operations provided for colored points,
as illustrated by the darken member function below. This could be useful if we wanted to
have the same color operations on a variety of geometric shapes.

class ColCircle : public Circle {
public:

ColCircle(ColPoint* c, float r) : Circle(c,r) { }

ColPoint* center;

virtual ColCircle* move(float dx, float dy)
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{center->move(dx,dy); darken(); return(this);}
virtual void darken()

{center->darken();}
};

The important issue is the redefinition of the type of center. Assume that each ColCircle
object has center and radius data fields at the same offset as the center and radius
fields of a Circle object. In the modified version of C++ considered in this question, the
declaration ColPoint* center does not mean that a ColCircle object has two center
data fields.

6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiple Inheritance and Thunks
Most contemporary implementations of C++ use a form of “thunk” in the implementation of multi-
ple inheritance, instead of the offset δ’s described in the book. Each thunk encodes the adjustment
to the this pointer that is stored in the vtable in the original implementation. Although some
of the mechanics may seem a little more complicated, the thunk implementation technique has
some definite advantages.
Consider class C defined by inheriting from classes A and B, and the following call to a virtual
function:

class A { int x; virtual void f(); }
class B { int y; virtual void f();

virtual void g(); }
class C : A, B { int z; void f(); }

C *c = new C;
B *b = c;
b->f(); // Calls C::f()

Using the implementation of multiple inheritance described in the book, the run-time structures
associated with this code have the following form:

Object Virtual function tables

c→ vptr −→ &C::f 0 // this is the Class C vtable
x

b→ vptr −→ &C::f -2 // this is the C-as-B vtable
y &B::g 0
z

In this illustration, the first entry in each row of the vtable is the address of the function that will
be called, and the second entry of the row is an offset that needs to be added to the this pointer
as part of the calling sequence.
In the alternate thunk-based implementation, the run-time structures look like this:

Object Virtual function tables

c→ vptr −→ &C::f // this is the Class C vtable
x

b→ vptr −→ &C::f in B // this is the C-as-B vtable
y &B::g
z

In this implementation, C::f in B is a thunk that subtracts 2 from the this pointer and then
calls C::f . Here is sample code for C::f in B, using a goto to avoid the usual calling sequence
and creation of an activation record:
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C::f_in_B(void *this){
this = this - 2;
goto C::f;

}

This problem asks you to compare the two implementations.

(a) If a C++ program uses only single inheritance, and no multiple inheritance, are offsets (in
implementation 1) or thunks (in implementation 2) needed? Explain?

(b) Suppose you built a compiler for C++ programs using only single inheritance, then modi-
fied it, using implementation 1, for multiple inheritance. How does the size of each vtable
change? More specifically, suppose that you compile code defining and using a class. If the
vtable for this class has size n under single inheritance, what size will it have when compiled
using your modified (multiple inheritance) compiler?

(c) Under the same conditions (modifying a single-inheritance compiler to support multiple in-
heritance, using the offset-based first implementation), how does the execution time required
to call a virtual function change?

(d) Now consider the questions posed in parts (b) and (c) for the second, thunk-based, imple-
mentation. How does the size of a the vtable for a base class (a class that is not derived from
any class) change? How does the execution time required to call a virtual function (for a
base-class object) change?

(e) What kind of programs run more efficiently using the first implementation than the second,
and what kind of programs run more efficiently using the second implementation than the
first? Your answer will probably include single inheritance, multiple inheritance, and the
what that objects are frequently manipulated in the program. You do not need to write more
than two or three sentences.

(f) What basic principle in the design of C++ seems to be more closely followed in the second
(thunk-based) implementation than the first (the offset-based implementation)?
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