
Homework 5
Due 10 November

Handout 6
CS242: Autumn 2004

3 November

Reading

1. Read Chapter 9, Data Abstraction and Modularity, skipping section 9.2.5 on datatype induction

and the material on ML modules and CLU abstraction mechanisms (unless you are interested).

2. Read Chapter 10, Concepts in Object-Oriented Languages.

3. Read Chapter 11 on Simula and Smalltalk.

Problems

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Efficiency vs. Modularity
The text describes the following form of heapsort:

function heapsort1(n:int, A:array[1..n])
begin

s := empty;
for i := 1 to n do s := insert(A[i], s);
for i := n downto 1 do (A[i],s) := deletemax(s);

end

where heaps (also known as priority queues) have the following signature

empty : heap
insert : elt * heap -> heap
deletemax: heap -> elt * heap

and specification:

• Each heap has an associated multiset of elements. There is an ordering < on the elements

that may be placed in a heap.

• empty has no elements.

• insert(elt,heap) returns a heap whose elements are elt plus the elements of heap.

• deletemax(heap) returns an element of heap that is≥ all other elements of heap, together

with a heap obtained by removing this element. If heap is empty, deletemax(heap) raises

an exception.

This problem asks you to reformulate the signature of heaps and the sorting algorithm so that

the algorithm is more efficient, without destroying the separation between the sorting algorithm

and the implementation of heaps. You may assume in this problem that we use pass-by-reference

everywhere.

The standard non-modular heapsort algorithm uses a clever way of representing a binary tree by

an array. Specifically, we can think of an array A of length n as a tree by regarding A[1] as the root

of the tree, and elements A[2 ∗ k] and A[2 ∗ k+ 1] as the left and right children of A[k]. One efficient

aspect of this representation is that the the links between tree nodes do not need do be stored;

we only need memory locations for the data stored at the tree nodes.

We say a binary tree is a heap if the value of the root of any subtree is the maximum of all the

node values in that subtree. For example, the following tree is a heap, and can be represented by

the array next to it.

1



A
A

�
�

A
A

�
�

�
�

A
A

26

18 13

15 911 6

26 18 13 15 11 6 9
��ll

aa��HHH"""

The standard heapsort algorithm has the form

function heapsort2(n:int, A:array[1..n])
begin

variable heap_size:int := n;
build_heap(n,A);
for i := n downto 2 do

swap(A[1], A[i]);
heap_size := heap_size - 1;
heapify(heap_size,A);

end

where the procedure build heap(n,A) reorders the elements of array A so that they form a

heap (binary search tree), and procedure heapify(k,A) restores array elements A[1], . . . , A[k] to

heap form, assuming that only A[1] was out of place.

(a) Assume that procedures insert, deletemax, and heapify all take time O(log n), i.e.,

time proportional to the logarithm of the number of elements in the heap, and build heap
takes time O(n), i.e., time linear in the number of elements in the heap.∗ Compare the time

and space requirements of the two algorithms, heapsort1 and heapsort2, and explain

what circumstances might make you want to choose one over the other.

(b) Suppose we change the signature of heaps to

make_heap : array * int -> heap
deletemax: heap -> elt

where deletemax may have a side-effect on the heap, and there is no longer empty or

insert.

In addition to the specification of a return value, which is needed for a normal function, a

function f with side effects should specify the before and after values of any variables that

change, using the following format:

f: If xbefore is . . . then xafter is . . .

The idea here is that the behavior of a function that may change the values of its arguments

can be specified by describing the relationship between values before the call and values

after the call. This “if . . . then . . . ” form also let’s you state any preconditions you might

need, such as that the array A has at least n elements.

Write a specification for this modified version of heaps.

(c) Explain in words (or some kind of pseudo-code if you prefer) how you might implement the

modified form of heap with imperative operations described in part 1b. You may assume

that procedures such as build heap, heapify, and swap are available. Assume that you

will use your heaps for some form of heapsort. Try to make your operations efficient, at least

for this application if not for all uses of heaps in general.

(Hint: you will need to specify a representation for heaps and an implementation of each

function. Try representing a heap by a pair 〈i, A〉, where A is an array and 0 < i ≤ length(A).)

∗Function build heap works by a form of iterated insertion. This might require O(n log n) but analysis of the actual code for

heapify allows us to show that it takes O(n) time. If this interests or puzzles you, see Introduction to Algorithms, by Cormen,

Leiserson, and Rivest, section 7.3.

2



(d) Write a heapsort algorithm (heapsort3) using the modified form of heap with imperative

operations described in part 1b. How will the time and space compare with the other two

algorithms?

(e) In all likelihood, your algorithm in part 1d (heapsort3) is not as time- and space-efficient as

the standard heapsort algorithm (heapsort2). See if you can think of some way of modifying

the definition or implementation of heaps that would let you preserve modularity and meet

the optimum efficiency for this algorithm, or explain some of the obstacles for achieving this

goal. (Alternatively, argue that your algorithm is as efficient as the standard heapsort.)

2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function Templates and Overloading
As we discussed in connection with polymorphism, function templates are a way to add type

variables to the C++ type system. In the example below, the type T allows the function f to take

different types of arguments without changing the function body. The declarations on lines (a)–(c)

are referred to as function base templates:

template<class T> void f( T ); // (a)
template<class T> void f( int, T, double ); // (b)
template<class T> void f( T* ); // (c)
void f( double ); // (d)

int main() {
long l;
int i;
double d;

f( l ); // calls (a) with T = long
f( i, 42, d ); // calls (b) with T = int
f( &i ); // calls (c) with T = int
f( i ); // calls (a) with T = int
f( d ); // calls (d)
}

The complication with function templates and overloading arises when we have multiple versions

of a function that can match a single call. In the absence of templates, the C++ compiler prevents

this sort of clash. With templates, though, we can see that the declarations (a) and (d) clash, but

the C++ compiler does not complain about this code. For example, the call f( d ) on the last

line of main could resolve to either declaration (a) or declaration (d).

Here are some rules for resolving overloaded function templates:

(a) Nontemplate functions are preferred. If a nontemplate function matches the parameter

types as well as any function template, the nontemplate function is used.

(b) If there are no nontemplate functions that are at least as good, then a function base template

will be used. Which function base template gets selected depends on which matches best and

is the “most specialized,” according to a set of fairly arcane rules:

i. If there is one “most specialized” function base template, that one gets used.

ii. If there is a tie for the “most specialized” function base template, the call is ambiguous

because the compiler cannot decide which is a better match. The programmer will have

to do something to qualify the call and say which one is wanted.

iii. If there is no function base template that can be made to match, the call is bad and the

programmer will have to fix the code.

We can provide an intuitive definition of “specialization” by saying that one template is more

specialized than another if it can match fewer types. For example, the function base template on

line (c) is more specialized than the function base template on line (a).
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(a) (5 points) For each of the calls in the example above, write down which of the rules above is

used to resolve clashes in overload resolution. If there is no clash (i.e. only one choice among

(a)-(d) is possible), write “no clash.” Otherwise write the specific rule that is used (e.g., (b)-iii,

would refer to the very last rule).

(b) Given that the call to f(d) could be handled by the declaration on line (a), why might a

programmer choose to overload f with the declaration on line (d)? More specifically, write a

body for the declaration on line (a) that contains no more than one line and will cause the

C++ type checker to report an error if you eliminated the declaration on line (d). In writing

your definition, remember that C and C++ will often implicitly cast the parameters to an

operator.

template<class T> void f(T x) { ; }

3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functions expressions using overloading
The Boost Lambda Library (BLL) is a C++ template library that implements a form of lambda

expression in C++, allowing a programmer to define unnamed function within C++ statements or

function calls. Here’s a short example:

for_each(a.begin(), a.end(), std::cout << _1 << ’ ’);

The expression std::cout << _1 << ’ ’ defines a unary (one-argument) function object, with

_1 indicating the parameter of this function. Within each iteration of the loop inside the function

for_each, the unnamed function is called with an element of the collection a as the actual argu-

ment, and the function body is evaluated with the actual argument substituted for the parameter

_1. A three-argument function is defined using _1, _2, and _3, for example. The maximum num-

ber of arguments to any BLL lambda expression is 9.

A BLL function may be called using the usual C syntax. For example, std::cout << _1 << ’ ’
can be applied to the argument 5 by writing (std::cout << _1 << ’ ’)(5). A function call

with too many arguments is a compile-time error.

The implementation of BLL uses overloading. For example, _1 by itself is a lambda expression,

and cout << _1 is a lambda expression because << is overloaded so that if one of its operands

is a lambda expression, the result is a lambda expression. The lambda expression _1 defines the

function with (_1)(x) = x for any argument value x.

(a) Write an expression in BLL syntax for the function f(x, y) = x + y, which would be written

(lambda (x y) (+ x y)) in Lisp.

(b) Similarly, write a BLL version of the Lisp expression:

((lambda (f x) (f (+ x 1))) (lambda (y) (+ y 2)) 3)

(c) Consider the operator +. Describe in a few sentences how you think BLL changes or adds to

the definition of + so that

i. _1 + 2 and 2 + _1 are lambda expressions,

ii. (_2 + 2)(x,y) correctly compiles as a function definition and call, and

iii. (_3 + 2)(x,y) results in a compile-time error.

4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Expression Objects
We can represent expressions given by the grammar

e ::= num | e + e

using objects from a class called expression. We begin with an “abstract class” called expres-

sion. While this class has no instances, it lists the operations commons to all kinds of expressions.

These are a predicate telling whether there are subexpressions, the left and right subexpressions

(if the expression is not atomic), and a method computing the value of the expression.
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class expression() =
private fields:

(* none appear in the _interface_ *)
public methods:

atomic?() (* returns true if no subexpressions *)
lsub() (* returns ‘‘left’’ subexpression if not atomic *)
rsub() (* returns ‘‘right’’ subexpression if not atomic *)
value() (* compute value of expression *)

end

Since the grammar gives two cases, we have two subclasses of expression, one for numbers and

one for sums.

class number(n) = extend expression() with
private fields:

val num = n
public methods:

atomic?() = true
lsub () = none (* not allowed to call this, *)
rsub () = none (* because atomic?() returns true *)
value () = num

end

class sum(e1,e2) = extend expression() with
private fields:

val left = e1
val right = e2

public methods:
atomic?() = false
lsub () = left
rsub () = right
value () = ( left.value() ) + ( right.value() )

end

(a) Product Class

Extend this class hierarchy by writing a prod class to represent product expressions of the

form

e ::= . . . | e ∗ e

(b) Method Calls

Suppose we construct a compound expression by

val a = number(3);
val b = number(5);
val c = number(7);
val d = sum(a,b);
val e = prod(d,c);

and send the message value to e. Explain the sequence of calls that are used to compute

the value of this expression: e.value(). What value is returned?

(c) Unary Expressions

Extend this class hierarchy by writing a square class to represent squaring expressions of

the form
e ::= . . . | e2
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What changes will be required in the expression interface? What changes will be re-

quired in subclasses of expression? What changes will be required in functions that use

expressions?† What changes will be required in functions that do not use expressions?

(Try to make as few changes as possible to the program.)

Hint :

consider an existing user function that uses expression class: this
function will return the number of leaf.

fun count (e)
var i:=0
if e.atomic?() then i:= 1
if not e.atomic?()then i:= count(e.lsub()) + count (e.rsub())
return i

end

consider also the following square class:

class square (e1) = extend expression() with
private fields:

val left = e1
public methods:

atomic?() = true
lsub() = left
rsub() = left
value() = left.value() * left.value()

this square class will lead to error, for instance, let e =
1+2+sq(3) if we pass this to the count function, it will return 4 as
oppose to 3. so in this case the user function breaks. if we modify
the rsub() = none in the square class, the user function will also
breaks.

to fix the problem, we need to add another method in expression
class to distinguish between atomic, unary and binary. also the user
function that uses expression must be changed so that it aware of
unary expression.

(d) Ternary Expressions

Extend this class hierarchy by writing a cond class to represent conditionals‡ of the form

e ::= . . . | e?e : e

What changes will be required if we wish to add this ternary operator? (As in part (c), try to

make as few changes as possible to the program.)

(e) N-Ary Expressions

Explain what kind of interface to expressions we would need if we would like to support

atomic, unary, binary, ternary and n−ary operators without making further changes to the

†Keep in mind that not all functions simply want to evaluate entire expressions. They may call the other methods as well.
‡In C, conditional expressions a?b:c evaluate a, and then return the value of b if a is non zero, or return the value of c if a

is zero.
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interface. In this part of the problem, we are not concerned with minimizing the changes to

the program; instead, we are interested in minimizing the changes that may be needed in

the future.

5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Simula Inheritance and Access Links
In Simula, a class is a procedure that returns a pointer to its activation record. Simula prefixed

classes are a precursor to C++ derived classes, providing a form of inheritance. This question asks

about how inheritance might work in an early version Simula, assuming that the standard static

scoping mechanism associated with activation records is used to link the derived class part of an

object with the base class part of the object.

Sample Point and ColorPt classes are given in the text. For the purpose of this problem,

assume that if cp is a ColorPt object, consisting of a Point activation record followed by a

ColorPt activation record, the access link of the parent class (Point) activation record points to

the activation record of the scope in which the class declaration occurs, and the access link of the

child class (ColorPt) activation record points to activation record of the parent class.

(a) Fill in the missing information in the following activation records, created by executing the

following code:

ref(Point) r;
ref(ColorPt) cp;
r :- new Point(2.7, 4.2);
cp :- new ColorPt(3.6, 4.9, red);
cp.distance(r);

Remember that function values are represented by closures, and that a closure is a pair

consisting of an environment (pointer to an activation record) and compiled code.

In this drawing, a bullet (•) indicates that a pointer should be drawn from this slot to the

appropriate closure or compiled code. Since the pointers to activation records cross and could

become difficult to read, each activation record is numbered at the far left. In each activation

record, place the number of the activation record of the statically enclosing scope in the slot

labeled “access link.” The first two are done for you. Also use activation record numbers for

the environment pointer part of each closure pair. Write the values of local variables and

function parameters directly in the activation records.

Activation Records Closures Compiled Code

(0) r •
cp •

(1) Point(. . . ) access link ( 0 )
x code for

y 〈 ( ) , • 〉 equals

equals •
distance • 〈 ( ) , • 〉

(2) Point part of cp access link ( 0 )
x code for

y 〈 ( ) , • 〉 distance

equals •
distance • 〈 ( ) , • 〉

(3) ColorPt(. . . ) access link ( )

c 〈 ( ) , • 〉 code for

equals • cpt equals
(4) cp.distance(r) access link ( )

q ( r )
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(b) The body of distance contains the expression

sqrt((x− q.x) ∗ ∗2 + (y− q.y) ∗ ∗2)

which compares the coordinates of the point containing this distance procedure to the

coordinate of the point q passed as an argument. Explain how the value of x is found when

cp.distance(r) is executed. Mention specific pointers in your diagram. What value of x
is used?

(c) This illustration shows that a reference cp to a colored point object points to the ColorPt
part of the object. Assuming this implementation, explain how the expression cp.x can be

evaluated. Explain the steps used to find the right x value on the stack, starting by following

the pointer cp to activation record (3).

(d) Explain why the call cp.distance(r) only needs access to the Point part of cp and not

the ColorPt part of cp.

(e) If you were implementing Simula, would you place the activation records representing ob-

jects r and cp on the stack, as shown here? Explain briefly why you might consider allocating

memory for them elsewhere.
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6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Smalltalk Run-time Structures
Here is a Smalltalk Point class whose instances represents points in the two-dimensional Carte-

sian plane. In addition to accessing instance variables, an instance method allows point objects

to be added together.

class name Point

superclass Object

class variables comment: none

instance variables x y

class messages and methods comment: instance creation

newX: xValue Y: yValue | |
↑ self new x: xValue y: yValue

instance messages and methods comment: accessing instance vars
x: xCoordinate y: yCoordinate | |

x ← xCoordinate

y ← yCoordinate

x | | ↑ x

y | | ↑ y

comment: arithmetic

+ aPoint | |
↑ Point newX: (x + aPoint x) Y: (y + aPoint y)

(a) Complete the top half of the drawing of the Smalltalk run-time structure shown in Figure 1

for a point object with coordinates (3, 4) and its class. Label each of the parts of the top half

of the figure, adding to the drawing as needed.

(b) A Smalltalk programmer has access to a library containing the Point class, but she cannot

modify the Point class code. In her program, she wants to be able to create points using

either cartesian or polar coordinates, and she wants to calculate both the polar coordinates

(radius and angle) and the Cartesian coordinates of points. Given a point (x, y) in cartesian

coordinates, the radius is ((x * x) + (y * y)) squareRoot, and the angle is (x/y)
arctan. Given a point (r, θ) in polar coordinates, the x coordinate is r * (θ cos) and the

y coordinate is r * (θ sin)

i. Write out a subclass, PolarPoint, of Point and explain how this solves the programming

problem. 4in

ii. Which parts of Point could you reuse and which would you have to define differently for

PolarPoint? 3in

(c) Complete the drawing of the Smalltalk run-time structure by adding a PolarPoint object

and its class to the bottom half of the figure you already filled in with Point structures.

Label each of the parts and add to the drawing as needed.
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Figure 1: Smalltalk Run-Time Structures for Point and PolarPoint
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