Handout 3

Homework 3 CS242: Autumn 2004
Due 20 October 13 October
Reading

1. Read chapters 5(Algol and ML) and 6 (Types) of the text.

Problems

e Algol 60 Procedure Types

In Algol 60, the type of each formal parameter of a procedunstrbe given. Howeveproc is considered a
type (the type of procedures). This is much simpler thanythe bf a function in most languages, since function
types usually give the type of the function arguments andytpe of the return result. In fact, this is a loophole
in Algol 60 compile-time type checking: since calls to prdaee parameters are not fully type checked, Algol
60 programs may produce run-time type errors.

Write a procedure declaration f@which causes the following program fragment to produce atime type
error.

proc P (proc Q
begin Qtrue) end;

P(Q;

wheret r ue is a boolean value. Explain why the procedure is staticgfhe tcorrect in Algol 60, but produces a
run-time type error. (You may assume that adding a boolean toteger is a run-time type error.)

2 ML Reduce for Trees
The binary tree datatype

datatype’atree = LEAFof’a]
NODE of ’a tree % 'a tree;

describes a binary tree for any type, but does not includenfgty tree (i.e., each tree of this type must have at
least a root node). Write a function

. / ! !/ !/ !
reduce : (‘a*x'a— ‘a) — ‘atree— 'a

that combines all the values of the leaves using the binaeyatipn passed as a parameter. In more detall, if
oper : 'a * 'a — 'a andt is the nonempty tree on the left in this picture,

/N AN
./\cd/\. opér\cd/o\per
SN 0N SN 0N

thenreduce oper t should be the result obtained by evaluating the tree on tie.rFor example, if is the
function

oper

p

fun f(x:int,y:int) =x+y;
thenreduce f (NODE(NODE(LEAF 1, LEAF 2), LEAF 3)) = (1+2) + 3 = 6. Explain your definition oteduce in
one or two sentences.

... ML implementation of lambda reduction

This exercise asks you to implemgdhiteduction in ML and test your reduction function. The neewfpara-
graphs explain the datatype you should use and give you spamepe terms. For the parts of the question that
ask you to fill in missing parts of code we supply, you may turomly the lines that contain the missing parts.
For the part of the problem that asks for a complete functitegse turn in the complete code for your function.
This function can be written in less than 15 lines of code. Vdawbe too picky about coding aesthetics — the
point of this problem is simply to ask you to try to “think” in IMa bit.

Lambda terms with addition have the BNF
t n=v|c|t+t|tt|Avt

In words, a lambda terms is either a variable, a constantl§eywith a fixed meaning), a sum of two terms, an
application of one term to another, or a lambda abstractiagsmiassumed that there are infinitely many variables,
V1,V2,V3,... SO We can write a term with as many variables as we need, arelaheeenough “unused” variables
that we can alwaysi-convert when we need to. Since the only operation built this version of lambda
calculus is addition, we might as well assume that the catstre numbers @, 2, Some examples of terms
produced by this grammar akg.y+ x andAy. Ax. y(yX)

We can write a very similar ML datatype for lambda terms witldiéion, representing the variableg vz, vs, ...
in the formvar(1),Var(2),... and the numbers,@,2,... in the form
Const(0),Const(1),Const(2),..., as follows

datatype term= Var of int| Const of int | Plus of term* term
| App of term* term| Lanbda of int* term

Here are some example terms that can be used to make lamgerritesre readable.

val x = Var(1);
val 'y = Var(2);
val one = Const(1);
val two = Const(2);

Using the convenient declaratiomal x_ = 1; val y_ = 2; that let us write the numbers 1 and 2 using
symbols that remind us of variablesandy, we can write terms\y.y+ x and Ay.Ax.y(yx), along with the
application of the second term to the first, as

val tw ce = Lanbda(y_, Lanmbda(x_, App(y, App(y,Xx))));
val addx = Lambda(y_, Plus(y,x));
val test = App(twice, addx);

You might notice that est is the lambda term used in lecture to illustrate the needsfieaming bound variables
when performing3-reduction.

(a) Write a function that substitutes a term for a variable haitt renaming bound variables. Your function
should have the form below, with the missing parts indicdg¢* - - m ssing part --*) filledin. The
functionsubst {t, x, s) substitutes for all free occurrences ofin s and is defined by cases on the form
of s:

fun subst(t,x,Var(n)) =if x=n thent else Var(n)

| subst (t, x, Const(n)) = Const(n)

| subst (t, x, Lanbda(n,t1)) = if x=n then (*-- mssing part --*)
el se (*-- nissing part --%*)

| subst (t,x, App(t1,t2)) = (*-- nissing part --*)

| subst (t,x,Plus(t1,t2)) = (*-- nissing part --*)

(b) Write a functionev that evaluates a terms usiagbst . This function should not rename bound variables.
Use the following form which breaks the problem into sepacatses. In each case, evaluate all the parts
that you can, but just return an expression ke (App(Const (3), Const (4))) as is since there is no
way to reduce this further. However, when an expression sdasumbers, you should return their sum.
fun ev(Var(n)) = Va

(r(n)
| ev(Const(n)) = Const(n)
| ev(Lanbda(n,t1)) = Lanmbda(n,ev(tl))
| ev(App(t1,t2))
(case ev(t1l
Var (
Const (
Lanmbda(n,

n
n
n,t

App(t, t1

Plus(t,t1

) =
tl
n
n

)_of

) => App(Var(n),ev(t2))

) => App(Const(n), ev(t2))

) => (*-- mssing part --*)

; => App(App(t,t1),ev(t2))

=> (*-- nissing part --%*)

ev(Plus(t1,t2)
case ev(tl) of
Var(n) => Plus(Var(n),ev(t2)) |
Const(n) => (case ev(t2) of
Var(m => Plus(Const(n), Var(m) |
Const(m => (*-- missing part --*) |
Lanbda(mt) => Plus(Const(n),Lanbda(mt))]|
App(t3,t4) => (*-- nissing part --*) |
Plus(t3,t4) => Plus(Const(n),Plus(t3,t4)))|
Lanbda(n,t) => Plus(Lanbda(n,t),ev(t2)) |
App(t,t1) => Plus(App(t,tl),ev(t2)) |
Plus(t,t1) => (*-- nissing part --%*) ;

Note that the case given fev(Lanbda(n, t1)) evaluates the body of a lambda expression.

(c) Write a functional pha that renames bound variables so that no free variatdepha(t erm is the same
as any bound variable. One way to do this is define
alpha(termy = alph(... ,term ...) whereal ph has additional arguments besides the term itself.
For example, you could try something like
al pha(term) = al ph(free variables(term,term wherefree variables is a function that re-
turns a list of free variables in a term. The idea here mighthgse the list of free variables so that you
can rename bound variables to names that are not in the tisteTmight also be some way to use the fact
that variables are numbered to simplify this. You can betareabut use your creativity to write a short,
easy to read function, not some complicated mess. Thereng@e for assignment or reference cells, so
do not use them.

(d) Defineeval (term) = ev(al pha(tern)) and comparev(test) with eval (test).

(e) (Extra Credit) Consider replacingv(Lanmbda(n,t1)) = Lanbda(n,ev(tl))
with ev(Lanmbda(n,t1)) = Lanbda(n,t1). How is the resulting new definition efral better? Worse?

A ML Types
Explain the ML type for each of the following declarations:

) = 3*x;

=x/2.0 * y/3.0;

fnox =>1f(g(x));
Jf.x,y) =if b(y) then f(x) else y;

Since you can simply type these expressions into an ML irééepto determine the type, be sure to write a
shortexplanation to show that you understand why the function has the type wai g

... Polymorphic Sorting

This function performing insertion sort on a list takes aguanents a comparison functibass and a listl of
elements to be sorted. The code compiles and runs correctly.

fun sort(less,nil) =nil |
sort(less, a::l) =
| et
fun insert(a, nil)
insert(a, b::l)

a:nil |
if less(a,b) then a::(b::l)
el se b::insert(a,l)

in
insert(a,sort(less,I))
end;

What is the type of thisort function? Explain briefly, including the type of the subsaigi functioni nsert.

You do not have to run the ML algorithm on this code; just ekplahy an ordinary ML programmer would
expect the code to have this type.

.. Parse Graph

(a) Use the parse graph below to calculate the ML type for thetfan
fun f(g,h) =g(h) + 2

J

int — int —>7

v

[\')

(b) Assuming that has the type you found in part (a), draw the parse graph ardrpeML type inference
onf(fn x=>x, 3).

... Type Inference and Bugs
What is the type of the following ML function?

fun append(nil,) =1
| append(x::l, m = append(l,m;
Write one or two sentences to explain succinctly and infdlmahy append has the type you give. This

function is intended to append one list onto another. HowéMeas a bug. How might knowing the type of this
function help the programmer to find the bug?

