
Homework 3
Due 20 October

Handout 3
CS242: Autumn 2004

13 October

Reading

1. Read chapters 5(Algol and ML) and 6 (Types) of the text.

Problems

1.Algol 60 Procedure Types
In Algol 60, the type of each formal parameter of a procedure must be given. However,proc is considered a
type (the type of procedures). This is much simpler than the type of a function in most languages, since function
types usually give the type of the function arguments and thetype of the return result. In fact, this is a loophole
in Algol 60 compile-time type checking: since calls to procedure parameters are not fully type checked, Algol
60 programs may produce run-time type errors.

Write a procedure declaration forQ which causes the following program fragment to produce a run-time type
error.

proc P (proc Q)
begin Q(true) end;

P(Q);

wheretrue is a boolean value. Explain why the procedure is statically type correct in Algol 60, but produces a
run-time type error. (You may assume that adding a boolean toan integer is a run-time type error.)

2. .. .ML Reduce for Trees
The binary tree datatype

datatype ′a tree = LEAF of ′a |
NODE of ′a tree ∗ ′a tree;

describes a binary tree for any type, but does not include theempty tree (i.e., each tree of this type must have at
least a root node). Write a function

reduce : (′a ∗ ′a→ ′a) → ′a tree→ ′a

that combines all the values of the leaves using the binary operation passed as a parameter. In more detail, if
oper : ′a ∗ ′a→ ′a andt is the nonempty tree on the left in this picture,

�
�

A
A

A
A

�
�

A
A

�
�

A
A

�
�

�
�

A
A

•

• •

• •

a b

c d

e f

�
�

A
A

A
A

�
�

A
A

�
�

A
A

�
�

�
�

A
A

oper

oper oper

oper oper

a b

c d

e f

thenreduce oper t should be the result obtained by evaluating the tree on the right. For example, iff is the
function

fun f(x : int,y : int) = x+y;

thenreducef(NODE(NODE(LEAF1,LEAF2), LEAF3)) = (1+2)+3= 6. Explain your definition ofreduce in
one or two sentences.

1

3. .ML implementation of lambda reduction
This exercise asks you to implementβ-reduction in ML and test your reduction function. The next few para-
graphs explain the datatype you should use and give you some example terms. For the parts of the question that
ask you to fill in missing parts of code we supply, you may turn in only the lines that contain the missing parts.
For the part of the problem that asks for a complete function,please turn in the complete code for your function.
This function can be written in less than 15 lines of code. We wont be too picky about coding aesthetics – the
point of this problem is simply to ask you to try to “think” in ML a bit.

Lambda terms with addition have the BNF

t ::= v |c |t + t |t t |λv.t

In words, a lambda terms is either a variable, a constant (symbol with a fixed meaning), a sum of two terms, an
application of one term to another, or a lambda abstraction.It is assumed that there are infinitely many variables,
v1,v2,v3, . . . so we can write a term with as many variables as we need, and there are enough “unused” variables
that we can alwaysα-convert when we need to. Since the only operation built intothis version of lambda
calculus is addition, we might as well assume that the constants are numbers 0,1,2, Some examples of terms
produced by this grammar areλy.y + x andλy.λx.y(yx)

We can write a very similar ML datatype for lambda terms with addition, representing the variablesv1,v2,v3, . . .

in the formVar(1),Var(2), . . . and the numbers 0,1,2, . . . in the form
Const(0),Const(1),Const(2), . . ., as follows

datatype term = Var of int| Const of int | Plus of term * term
| App of term * term | Lambda of int* term

Here are some example terms that can be used to make larger terms more readable.

val x = Var(1);
val y = Var(2);
val one = Const(1);
val two = Const(2);

Using the convenient declarationsval x_ = 1; val y_ = 2; that let us write the numbers 1 and 2 using
symbols that remind us of variablesx andy, we can write termsλy.y + x and λy.λx.y(yx), along with the
application of the second term to the first, as

val twice = Lambda(y_, Lambda(x_, App(y, App(y,x))));
val addx = Lambda(y_, Plus(y,x));
val test = App(twice,addx);

You might notice thattest is the lambda term used in lecture to illustrate the need for renaming bound variables
when performingβ-reduction.

(a) Write a function that substitutes a term for a variable, without renaming bound variables. Your function
should have the form below, with the missing parts indicatedby (*-- missing part --*) filled in. The
functionsubst{t,x,s) substitutest for all free occurrences ofx in s and is defined by cases on the form
of s:

fun subst(t,x,Var(n)) = if x=n then t else Var(n)
| subst(t,x,Const(n)) = Const(n)
| subst(t,x,Lambda(n,t1)) = if x=n then (*-- missing part --*)

else (*-- missing part --*)
| subst(t,x,App(t1,t2)) = (*-- missing part --*)
| subst(t,x,Plus(t1,t2)) = (*-- missing part --*)

2

(b) Write a functionev that evaluates a terms usingsubst. This function should not rename bound variables.
Use the following form which breaks the problem into separate cases. In each case, evaluate all the parts
that you can, but just return an expression likeev (App(Const(3),Const(4))) as is since there is no
way to reduce this further. However, when an expression addstwo numbers, you should return their sum.

fun ev(Var(n)) = Var(n)
| ev(Const(n)) = Const(n)
| ev(Lambda(n,t1)) = Lambda(n,ev(t1))
| ev(App(t1,t2)) =

(case ev(t1) of
Var(n) => App(Var(n),ev(t2)) |

Const(n) => App(Const(n),ev(t2)) |
Lambda(n,t) => (*-- missing part --*) |

App(t,t1) => App(App(t,t1),ev(t2)) |
Plus(t,t1) => (*-- missing part --*)

| ev(Plus(t1,t2)) =
case ev(t1) of

Var(n) => Plus(Var(n),ev(t2)) |
Const(n) => (case ev(t2) of

Var(m) => Plus(Const(n),Var(m)) |
Const(m) => (*-- missing part --*) |

Lambda(m,t) => Plus(Const(n),Lambda(m,t))|
App(t3,t4) => (*-- missing part --*) |
Plus(t3,t4) => Plus(Const(n),Plus(t3,t4)))|

Lambda(n,t) => Plus(Lambda(n,t),ev(t2)) |
App(t,t1) => Plus(App(t,t1),ev(t2)) |
Plus(t,t1) => (*-- missing part --*) ;

Note that the case given forev(Lambda(n,t1)) evaluates the body of a lambda expression.

(c) Write a functionalpha that renames bound variables so that no free variable inalpha(term) is the same
as any bound variable. One way to do this is define
alpha(term) = alph(... ,term, ...) wherealph has additional arguments besides the term itself.
For example, you could try something like
alpha(term) = alph(free_variables(term),term) wherefree_variables is a function that re-
turns a list of free variables in a term. The idea here might beto use the list of free variables so that you
can rename bound variables to names that are not in the list. There might also be some way to use the fact
that variables are numbered to simplify this. You can be creative, but use your creativity to write a short,
easy to read function, not some complicated mess. There is noneed for assignment or reference cells, so
do not use them.

(d) Defineeval(term) = ev(alpha(term)) and compareev(test) with eval(test).

(e) (Extra Credit) Consider replacingev(Lambda(n,t1)) = Lambda(n,ev(t1))
with ev(Lambda(n,t1)) = Lambda(n,t1). How is the resulting new definition ofeval better? Worse?

4. .. .ML Types
Explain the ML type for each of the following declarations:

(a) fun a(x) = 3*x;

(b) fun b(x,y) = x/2.0 * y/3.0;

(c) fun c(f,g) = fn x => f(g(x));

(d) fun d(b,f,x,y) = if b(y) then f(x) else y;

Since you can simply type these expressions into an ML interpreter to determine the type, be sure to write a
shortexplanation to show that you understand why the function has the type you give.

3

5. .. .Polymorphic Sorting
This function performing insertion sort on a list takes as arguments a comparison functionless and a listl of
elements to be sorted. The code compiles and runs correctly.

fun sort(less,nil) = nil |
sort(less, a::l) =

let
fun insert(a, nil) = a::nil |

insert(a, b::l) = if less(a,b) then a::(b::l)
else b::insert(a,l)

in
insert(a,sort(less,l))

end;

What is the type of thissort function? Explain briefly, including the type of the subsidiary functioninsert.
You do not have to run the ML algorithm on this code; just explain why an ordinary ML programmer would
expect the code to have this type.

6. .. .Parse Graph

(a) Use the parse graph below to calculate the ML type for the function

fun f(g,h) = g(h) + 2;

e
e

e
e

e

e
e

e
e

�
�

�

@
@

@

@
@

@
%

%
%

�
�

@

@

@+

g

2

int→ int→ int

h

λ

(b) Assuming thatf has the type you found in part (a), draw the parse graph and perform ML type inference
onf(fn x=>x, 3).

7.Type Inference and Bugs
What is the type of the following ML function?

fun append(nil, l) = l
| append(x::l, m) = append(l,m);

Write one or two sentences to explain succinctly and informally why append has the type you give. This
function is intended to append one list onto another. However, it has a bug. How might knowing the type of this
function help the programmer to find the bug?

4

