
Homework 2
Due 13 October

Handout 2
CS242: Autumn 2004

6 October

Reading

1. Read Chapter 2 on computability. This is pretty short.

2. Read Chapter 4. You do not need to try to understand the fixed-point operator (page 64 and page 65 up through
the end of Example 4.3) unless you find this intriguing. (Somepeople do!)

Problems

1.Partial and Total Functions
For each of the following function definitions, give the graph of the function. Say whether this is a partial
function or a total function on the integers. If the functionis partial, say where the function is defined and
undefined.

For example, the graph off(x) = if x > 0 then x+2 else x/0 is the set of ordered pairs
{〈x,x+2〉 |x > 0}. This is a partial function. It is defined on all integers greater than 0 and undefined on integers
less than or equal to 0.

Functions:

(a) f(x) = if x∗2> 40 then 2∗x else x+1/0

(b) f(x) = if x∗x> 1 then 5/x else f(x+1)

(c) f(x) = if x≤ 5 then log(x−1) else f(x+2)

2.Finding Shortest Programs
Some optimizers try to find the fastest possible code, and some try to find the shortest sequence of instructions.
Code size is often important in practice, and critical for devices like smart cards and embedded processors that
have limited memory.

Suppose you are given a Lisp functionshortest that, given any syntactically correct function as an argument,
produces the shortest equivalent function. When we say two Lisp functions are equivalent, we mean that they
compute the same partial function. Among several equally short representations,shortest chooses the one
which is first in lexicographic order.

For example, consider the function that adds one to its argument, twice:

(lambda (x) (+ (+ x 1) 1))

We might find that(shortest (lambda (x) (+ (+ x 1) 1))) evaluates to:

(lamba (a) (+ a 2))

Can you solve the halting problem usingshortest? More specifically, can you write a program that takes a
Lisp functionP and an integern as arguments, and then decides whether(P n) halts?

If you believe that the halting problem can be solved if you are givenshortest, then explain your answer by
describing how a program solving the halting problem would work. If you believe that the halting problem
cannot be solved usingshortest, then explain briefly why you think not.

1

3.Ambiguous Grammars
Grammars are ambiguous if more than one parse tree exists forthe same expression. For many mathematical
expressions, ambiguity can be resolved sensibly using precedence and associativity to determine the correct
parse tree. However, there other kinds of expressions whereambiguity cannot be resolved as easily. Consider
the following grammar for representing conditional statements:

<exp> ::= if <exp> then <exp>
| if <exp> then <exp> else <exp>
| 0
| 1
| 2
| 3

(a) Show two different parse trees for the expression

if 0 then if 1 then 2 else 3

(b) How would you disambiguate the grammar from part(a)? You can change the language if you wish by
adding extra keywords. (Hint: how does thebash shell scripting language solve this problem?).

(c) The C programming language allows simpleif statements of the form

if (<expression>)
<statement>;

where〈statement〉 is any single-line statement, includingif-else statements. If the programmer wants
more than one statement to be executed in theif block, he or she must enclose the statement in curly
braces:

if (<expression>)
{

<statement>;
<statement>;

.

.

.
<statement>;

}

Perl, on the other hand, does not allow the simpleif-statement allowed by C. In Perl, all statements in an
if block must be wrapped in curly braces, even if there is only one statement. Why do you think Perl’s
designer decided on this convention? Note that Perl contains anif-else statement as well.

4.Lambda Calculus Reduction
Use lambda calculus reduction to find a shorter expression for (λp.λq.λr.p q r)(λp.λq.p q r). Begin by renaming
bound variables. You should do all possible reductions to get the shortest possible expression. What goes wrong
if you do not rename bound variables?

5. .. .Symbolic Evaluation
The Lisp program fragment

(define f (lambda (x) (+ x x)))
(define g (lambda (y) (- y 2)))
(f (g 2))

2

can be written as the following lambda expression:



 (λ f .λg. f (g 2))

︸ ︷︷ ︸

(f (g 2))

(λx.x + x)
︸ ︷︷ ︸

f




 (λy.y−2)

︸ ︷︷ ︸

g

Reduce the expression to a normal form in two different ways,as described below.

(a) Reduce the expression by choosing, at each step, the reduction that eliminates aλ as far to theleft as
possible.

(b) Reduce the expression by choosing, at each step, the reduction that eliminates aλ as far to theright as
possible.

6. Semantics of Initialize-Before-Use
A nonstandard denotational semantics describing initialize-before-use analysis is presented in the text.

(a) What is the meaning

C [[x :=0;y :=0;if x = y then z :=0 else w :=1]](s0)

in the states0 = λy ∈ Variables.uninit? Show how to calculate your answer.

(b) Calculate the meaning
C [[if x = y then z :=y else z :=w]](s)

in states with s(x) = init, s(y) = init, ands(v) = uninit or every other variablev.

7.Modifying functional programs
Quicksort is a well-known sorting algorithm. The algorithmworks by choosing some element of the list to be
sorted, called thepivot, and then splitting the list into elements less than the pivotand elements greater than
the pivot. (Elements equal to the pivot could be placed in either list, as long as they are only counted once.)
Then each sublist is sorted and the results concatenated. While the worst-case behavior of Quicksort is not very
good, the average behavior is excellent. Some implementations use the first element in the list as the pivot, some
choose the pivot randomly. Here are implementations of Quicksort in Haskell, a pure functional language, and
C, an impure and not really functional language.

The first five lines below are the Haskell program. The first line says thatqsort of the empty list is the empty
list. In the second line, the formqsort (x:xs) indicatesqsort applied to a nonempty list of the formx:xs,
where : is the Haskell infix operator for listcons. In Lisp terms,x:xs is a nonempty list whosecar is x andcdr
isxs. Lines 2–5 of the code “say” that Quicksort of a nonempty listx:xs returns a list obtained by concatenating
the Quicksort of the elements less thanx with x itself and the Quicksort of the elements greater than or equal to
x. Questions about the programs appear after the code.

qsort [] = []
qsort (x:xs) = qsort elts_lt_x ++ [x] ++ qsort elts_greq_x

where
elts_lt_x = [y | y <- xs, y < x]
elts_greq_x = [y | y <- xs, y >= x]

3

qsort(a, lo, hi) int a[], hi, lo;
{
int h, l, p, t;

if (lo < hi) {
l = lo;
h = hi;
p = a[hi];

do {
while ((l < h) && (a[l] <= p))

l = l+1;
while ((h > l) && (a[h] >= p))

h = h-1;
if (l < h) {

t = a[l];
a[l] = a[h];
a[h] = t;

}
} while (l < h);

t = a[l];
a[l] = a[hi];
a[hi] = t;

qsort(a, lo, l-1);
qsort(a, l+1, hi);

}
}

(a) Which list element is used as the pivot in each example?

(b) Which code seems easier to understand? Why? What if you had never programmed in either language
before?

(c) Explain how you might modify the Haskell program to use a randomly chosen element as the pivot. You
do not need to write the Haskell code. Just explain what changes would be required. Pretend that you are
working with someone who knows Haskell well, but doesn’t know a thing about sorting lists. Think about
the kind of instructions you would give this person to modifythe code.

(d) Explain how you might modify the C code to use a randomly chosen list element as the pivot.

(e) Which code modification seems easier to do?

(f) Suppose you had to explain the modified code to an Army General who is going to use this in a system to
control launch of nuclear missiles. The Army General has never taken a programming course, or perhaps
knows a little Cobol. In which case would it be easier to convince a skeptic that the code is actually
correct?

(g) How much extra space (memory), in addition to the space usedto represent the input list, do you think
the Haskell program uses? Since we haven’t talked about how Haskell is implemented, just try to make a
reasonable, educated estimate. How does this compare to thememory requirements of the C program?

4

