Handout 2

Homework 2 CS242: Autumn 2004
Due 13 October 6 October
Reading

1. Read Chapter 2 on computability. This is pretty short.

2. Read Chapter 4. You do not need to try to understand the fisgtt-operator (page 64 and page 65 up through
the end of Example 4.3) unless you find this intriguing. (S@aeple do!)

Problems

L o Partial and Total Functions

For each of the following function definitions, give the gnapf the function. Say whether this is a partial
function or a total function on the integers. If the functignpartial, say where the function is defined and
undefined.

For example, the graph d{x) = if x > 0 then x+ 2 else x/0 is the set of ordered pairs
{{x,x+2) |x> 0}. This is a partial function. It is defined on all integers gee¢han 0 and undefined on integers
less than or equal to 0.

Functions:

(@) f(x)=1if x*2>40then2*xelsex+1/0
(b) f(x)=if x*x>1then5/xelsef(x+1)
(c) f(x) =if x < 5thenlog(x—1)else f(x+2)

2 Finding Shortest Programs

Some optimizers try to find the fastest possible code, anggpnto find the shortest sequence of instructions.
Code size is often important in practice, and critical fovides like smart cards and embedded processors that
have limited memory.

Suppose you are given a Lisp functieimor t est that, given any syntactically correct function as an argotne
produces the shortest equivalent function. When we say tigp functions are equivalent, we mean that they
compute the same partial function. Among several equallytsiepresentationghort est chooses the one
which is first in lexicographic order.

For example, consider the function that adds one to its aegintwice:
(lambda (x) (+ (+ x 1) 1))

We might find tha{ shortest (lanbda (x) (+ (+ x 1) 1))) evaluates to:
(lanmba (a) (+ a 2))

Can you solve the halting problem usisbort est ? More specifically, can you write a program that takes a
Lisp functionP and an integen as arguments, and then decides wheflfen) halts?

If you believe that the halting problem can be solved if yoa givenshor t est , then explain your answer by
describing how a program solving the halting problem woutitky If you believe that the halting problem
cannot be solved usirghor t est , then explain briefly why you think not.

4.

.. Ambiguous Grammars

Grammars are ambiguous if more than one parse tree exisisf@ame expression. For many mathematical
expressions, ambiguity can be resolved sensibly usingepgesee and associativity to determine the correct
parse tree. However, there other kinds of expressions vdrakeguity cannot be resolved as easily. Consider
the following grammar for representing conditional stageis:

<exp> if <exp> then <exp>

| if <exp> then <exp> el se <exp>
| O

| 1
| 2
| 3

(a) Show two different parse trees for the expression
if Othenif 1then 2 else 3
(b) How would you disambiguate the grammar from paj®? You can change the language if you wish by
adding extra keywords. (Hint: how does ttesh shell scripting language solve this problem?).
(c) The C programming language allows simpfestatements of the form
i f (<expression>)
<st at enent >;
where(st at enent) is any single-line statement, including- el se statements. If the programmer wants

more than one statement to be executed ini thdlock, he or she must enclose the statement in curly
braces:

i f (<expression>)

{

<st at enent >;
<st at enent >;

<st at enent >;

}

Perl, on the other hand, does not allow the simplestatement allowed by C. In Perl, all statements in an
i f block must be wrapped in curly braces, even if there is only stlatement. Why do you think Perl’s
designer decided on this convention? Note that Perl comtainf - el se statement as well.

... Lambda Calculus Reduction

Use lambda calculus reduction to find a shorter expressidafoAq.Ar.pqr)(Ap.Ag.pqr). Begin by renaming
bound variables. You should do all possible reductions torgeshortest possible expression. What goes wrong
if you do not rename bound variables?

... Symbolic Evaluation
The Lisp program fragment

(define f (lanbda (x) (+ x X)))
(define g (lanbda (y) (- vy 2)))

(f (92)

can be written as the following lambda expression:

(AfAQ.f (92) AXX+X) | (Ay.y—2)
—_—] Y——

(f(g2) f 9

Reduce the expression to a normal form in two different wagsijescribed below.

(a) Reduce the expression by choosing, at each step, the i@ddicht eliminates a as far to theleft as

possible.
(b) Reduce the expression by choosing, at each step, the realticat eliminates & as far to theight as
possible.
T Semantics of Initialize-Before-Use

A nonstandard denotational semantics describing irigatiefore-use analysis is presented in the text.

(a) What is the meaning
C[x:=0;y:=0;if x =y thenz:=0 else w:=1]|(S)

in the statesp = Ay € Variables.uninit? Show how to calculate your answer.

(b) Calculate the meaning
C[if x =y thenz:=y else z:=w]|(S)

in states with s(x) = init, s(y) = init, ands(v) = uninit or every other variable.

72 Modifying functional programs

Quicksort is a well-known sorting algorithm. The algoritlworks by choosing some element of the list to be
sorted, called theivot, and then splitting the list into elements less than the parat elements greater than
the pivot. (Elements equal to the pivot could be placed ihegitist, as long as they are only counted once.)
Then each sublist is sorted and the results concatenateite i worst-case behavior of Quicksort is not very
good, the average behavior is excellent. Some implementatise the first element in the list as the pivot, some
choose the pivot randomly. Here are implementations of K¥aid in Haskell, a pure functional language, and
C, an impure and not really functional language.

The first five lines below are the Haskell program. The firse kays thagisort of the empty list is the empty
list. In the second line, the forsort (x:xs) indicatesgsort applied to a nonempty list of the form xs,
where : is the Haskell infix operator for lisbns. In Lisp termsx: xs is a nonempty list whosear isx andcdr
isxs. Lines 2-5 of the code “say” that Quicksort of a nonemptydists returns a list obtained by concatenating
the Quicksort of the elements less thawith x itself and the Quicksort of the elements greater than orléqua
X. Questions about the programs appear after the code.

gsort [] =[]
gsort (x:xs) = qsort elts_It_x ++ [x] ++ gsort elts_greq_x
wher e
elts It x =[y| y< xs, y<x]
elts_greqgx = [y | y < xs, y >=]

gsort(a, lo, hi) int a[], hi, lo;

{
int h I, p, t;

if (lo<hi){
| | o;
h =hi;
p =alhi];

do {

while ((I <h) & (a[l] <= p))
[= 1+1;

while ((h >1) && (a[h] >= p))
h = h-1;

if (I <h) {
t =a[l];
a[l] =a[h];
afh] =t;

}
} while (I

AN

h);

t =afl];
a[l] =a[hi];
a[hi] =t;

gsort(a, lo, I-1);
gsort(a, I+1, hi);

(a) Which list element is used as the pivot in each example?

(b) Which code seems easier to understand? Why? What if you &t programmed in either language
before?

(c) Explain how you might modify the Haskell program to use ad@nly chosen element as the pivot. You
do not need to write the Haskell code. Just explain what oesmaguld be required. Pretend that you are
working with someone who knows Haskell well, but doesn'tireothing about sorting lists. Think about
the kind of instructions you would give this person to modifg code.

(d) Explain how you might modify the C code to use a randomly elndist element as the pivot.
(e) Which code modification seems easier to do?

(f) Suppose you had to explain the modified code to an Army Gewdiais going to use this in a system to
control launch of nuclear missiles. The Army General hagntaken a programming course, or perhaps
knows a little Cobol. In which case would it be easier to caneia skeptic that the code is actually
correct?

(9) How much extra space (memory), in addition to the space teseepresent the input list, do you think
the Haskell program uses? Since we haven't talked about haskeédl is implemented, just try to make a
reasonable, educated estimate. How does this compareeetim@ry requirements of the C program?

