Handout 1

Homework 1 C$242: Autumn 2003
Due 6 October 29 September
Reading

1. Read Chapters 1-3 in the textbook.

2. (Optional) J. McCarthy, Recursive functions of symbolic expressions and their computation by
machine, Comm. ACM 3,4 (1960) 184—-195. You can find a link to this on the CS242 web site. The
most relevant sections are 1, 2 and 4; you can also skim the other sections if you like.

Problems

L Cons Cell Representations

(a) Draw the list structure created by evaluating ‘ ‘ ‘ ‘ ‘ ‘
(cons 'A (cons 'B 'C))

(b) Write a Pure Lisp expression that will result in this [+—[8]c]
representation, with no sharing of the (B . C) cell. Y

Explain why your expression produces this structure. A] +—[8B]C]
(c) Write a Pure Lisp expression that will result in this @E’—L

representation, with sharing of the (B . C) cell. Ex-

plain why your expression produces this structure. A] —[8B]C]

While writing your expressions, use only these Lisp constructs: lambda abstraction, function
application, the atoms 'A 'B 'C , and the basic list functions (cons, car, cdr, atom, eq).
Assume a simple-minded Lisp implementation that does not try to do any clever detection of
common subexpressions or advanced memory allocation optimizations.

2 Conditional Expressions in Lisp

The semantics of the Lisp conditional expression

(cond (p1 €1)...(pn €n))

is explained in the text. This expression does not have a value if py, ..., pi are false and pj; does
not have a value, regardless of the values of pyy2,...,pp.

Imagine you are an MIT student in 1958 and you and McCarthy are considering alternative
interpretations for conditionals in Lisp.

(a) Suppose McCarthy suggests that the value of (cond (p; e1)...(pn €r)) should be the value is
ex if py is true and if, for every i < k, the value of expression p; is either false or undefined. Is
it possible to implement this interpretation. Why or why not? (Hint: Remember the halting
problem.)

(b) Another design for conditional might allow any of several values if more than one of the
guards (p1, ..., p,) is true. More specifically (and be sure to read carefully), suppose someone
suggest the following meaning for conditional:

i. The conditional’s value is undefined if none of the p; are true.

ii. If some py;, is true, then the implementation must return the value of e; for some j with
p; true. However, it need not be the first such e;.

Notice that in (cond (a b) (c d) (e f)), for example, if a runs forever, c evaluates to true, and
e halts in error, the value of this expression should be the value of d, if it has one. Briefly
describe a way to implement conditional so that properties [i] and [ii] are true. You only need
to write two or three sentences to explain the main idea.

(¢) Under the original interpretation, the function

(defun odd (x) (cond ((eq x 0) nil)
((ea x 1) 1)
(> x 0) (odd (- x 2)))
(t (odd (+ x 2)))

would give us t for odd numbers and nil for even numbers. Modify this expression so that
it would always give us t for odd numbers and nil for even numbers under the alternate
interpretation described in part (b).

(d) The normal implementation of boolean OR is designed not to evaluate a sub-expression unless
it is necesary. This is called the “short-circuiting OR”, and it may be defined as follows:

true if e; = true
Scor(er, es) = true if e; = false and ey = true
LE2) 7 false if e; = ey = false

undefined otherwise

It allows for es to be undefined if e; is true.

The “parallel OR” is a related construct which gives an answer whenever possible (possibly
doing some unnecessary sub-expression evaluation). It is defined similarly:

true if e = true
true if ey = true
Por(ei,eq) = .
(e1,€2) false if e = ey = false

undefined otherwise

It allows for es to be undefined if ¢ is true, and also allows e; to be undefined if e; is true.
You may assume that e; and e; do not have side-effects.

Of the original interpretation, the interpretation in part (a), and the interpretation in part
(b), which ones would allow us to implement Scor most easily? What about Por? Which
interpretation would make implementations of “short-circuiting OR” difficult? Which inter-
pretations would make implementation of “parallel OR” difficult? Why?

B Detecting Errors

Evaluation of a Lisp expression can either terminate normally (and return a value), terminate
abnormally with an error, or run forever. Some examples of expressions that terminate with
an error are (/ 3 0) , division by 0; (car 'a) , taking the car of an atom; and (+ 3 “a”) ,
adding a string to a number. The Lisp system detects these errors, terminates evaluation, and
prints a message to the screen. Your boss wants to handle errors in Lisp programs without
terminating the computation, but doesn’t know how, so your boss asks you to ...

(a) ...implement a Lisp construct (error? E) that detects whether an expression E will
cause an error. More specifically, your boss wants evaluation of (error? E) to halt with
value true if evaluation of E terminates in error and halt with value false otherwise. Explain
why it is not possible to implement the error? construct as part of the Lisp environment.

(b) ...implement a Lisp construct (Quarded E) that either executes E and returns its value,
or if E would halt with an error, returns 0 without performing any side effects. This could be
used to try to evaluate E and if an error would occur, just use 0 instead. For example,

(+ (guarded E) E") ; just E' if E halts with an error; E+E’ otherwise

will have the value of E’ if evaluation of E would halt in error, and the value of E + E’ oth-
erwise. How might you implement the guarded construct? What difficulties might you
encounter? Notice that unlike (error? E) , evaluation of (guarded E) does not need to
halt if evaluation of E does not halt.

A Lisp and higher-order functions

Lisp functions compose, mapcar , and maplist are defined as follows, writing #t for ¢true and ()
for the empty list. Text beginning with ;; and continuing to the end of a line is a comment.

(define compose
(lambda (f Q) (lambda (x) (f (g xN)))

(define mapcar
(lambda (f xs)

(cond
((eq? xs () () ;; If the list is empty, return the empty list
(#t ;; Otherwise, apply f to the first element ...

(cons (f (car xs))
;;; and map f on the rest of the list
(mapcar f (cdr xs))

D))

(define maplist
(lambda (f xs)

(cond
((eq? xs ()) () ;; If the list is empty, return the empty list
(#t ;; Otherwise, apply f to the list ...

(cons (f xs)
;;; and map f on the rest of the list
(maplist f (cdr xs))

M)

The difference between maplist and mapcar is that maplist applies f to every sublist, while
mapcar applies f to every element. (The two function expressions differ only in the 6th line.) For
example, if inc is a function that adds one to any number, then

(mapcar inc '(1 2 3 4) =(2 3 405)
while

(maplist (lambda (xs) (mapcar inc xs)) (1 2 3 4))
= ((2 345) (3 45) @ 5)())

However, you can almost get mapcar from maplist by composing with the car function. In
particular, notice that

(mapcar f (1 2 3 4))
= ((f (car (1 2 3 4))) (f (car (2 3 4))) (f (car (3 4))) (f (car (4))))

Write a version of compose that lets us define mapcar from maplist . More specifically, write a
definition of compose2 so that

((compose2 maplist car) f xs) = (mapcar f xs)

for any function f and list xs.

(@

(b)

(c)

Fill in the missing code in the following definition. The correct answer is short and fits here
easily. You may also want to answer parts (b) and (c) first.

(define compose2
(lambda (g h)

(lambda (f xs)

(g (lambda (xs) () Xs)
)
When (compose2 maplist car) is evaluated, the result is a function defined by (lambda
(f xs) (g ...) above, with

which function replacing g?

and which function replacing h?

We could also write the subexpression (lambda (xs) (...)) as (compose (...) (...))
for two functions. Which two functions are these? (Write them in the right order.)

.. Reference Counting

This question is about a possible implementation of garbage collection for Lisp. Both impure
and Pure Lisp have lambda abstraction, function application, and elementary functions atom,
eq, car , cdr , and cons. Impure Lisp also has rplaca , rplacd and other functions that have
side-effects on memory cells.

Reference counting is a simple garbage collection scheme that associates a reference count with
each datum in memory. When memory is allocated, the associated reference count is set to 0.
When a pointer is set to point to a location, the count for that location is incremented. If a
pointer to a location is reset or destroyed, the count for the location is decremented. Consequently,
the reference count always tells how many pointers there are to a given datum. When a count
reaches 0, the datum is considered garbage and returned to the free-storage list. For example,
after evaluation of (cdr (cons (cons 'A 'B) (cons 'C ’'D))) , the cell created for (cons
‘A 'B) is garbage, but the cell for (cons 'C 'D) is not.

(@

(©)

Describe how reference counting could be used for garbage collection in evaluating the ex-
pression:

(car (cdr (cons (cons a b) (cons c d))))

wherea, b, ¢, d are previously defined names for cells. Assume that the reference counts
fora, b, ¢, d areinitially set to some numbers greater than 0, so that these do not become
garbage. Assume that the result of the entire expression is not garbage. How many of the
three cons cells generated by the evaluation of this expression can be returned to the free-
storage list?

The “impure” Lisp function rplaca _ takes as arguments a cons cell ¢ and a value v and
modifies ¢’s address field to point to v. Note that this operation does not produce a new cons
cell; it modifies the one it receives as an argument. The function rplacd performs the same
function with respect the decrement portion of its argument cons cell.

Lisp programs using rplaca or rplacd may create memory structures that cannot be
garbage collected properly by reference counting. Describe a configuration of cons cells
that can be created using operations of Pure Lisp and rplaca and rplacd . Explain why the
reference counting algorithm deos not work properly on this structure.

(¢) Think of another context (Hint: e.g. file system) in which reference counting is used to
collect unused resources. Describe how the problem you discovered in the previous question
is avoided or solved in this context.

B, Concurrency in Lisp

The concept of future was popularized by R. Halstead’s work on the language Multilisp for con-
current Lisp programming. Operationally, a future consists of a location in memory (part of a
cons cell) and a process that is intended to place a value in this location at some time “in the
future.” More specifically, the evaluation of (future e) proceeds as follows:

i. The location ¢ that will contain the value of (future e) is identified (if the value is going
to go into an existing cons cell) or created if needed.

ii. A process is created to evaluate e.
iii. When the process evaluating e completes, the value of e is placed in the location £.

iv. The process that invoked (future e) continues in parallel with the new process. If the
originating process tries to read the contents of location ¢ while it is still empty, then the
process blocks until the location has been filled with the value of e.

Other than this construct, all other operations in this problem are defined as in Pure Lisp. For
example, if expression e evaluates to the list (1 2 3) , then the expression

(cons 'a (future e))

produces a list whose first element if the atom 'a and whose tail becomes (1 2 3) when the
process evaluating e terminates. The value of the future construct is that the program can
operate on the car of this list while the value of the cdr is being computed in parallel. However,
if the program tries to examine the cdr of the list before the value has been placed in the empty
location, then the computation will block (wait) until the data is available.

(a) Assuming an unbounded number of processors, how much time would you expect the evalu-
ation of the following fib function to take, on positive integer argument n?

(defun fib (n)
(cond ((eq n 0) 1)
((eq n 1) 1)
(T (plus (future (fib (minus n 1)))
(future (fib (minus n 2)))))))

We are only interested in time up to a multiplicative constant; you may use “big Oh” notation
if you wish. If two instructions are done at the same time by two processors, count that as
one unit of time.

(b) At first glance, we might expect that two expressions

(..e.)
(...(future e) ..)

which differ only because an occurrence of a subexpression e is replaced by (future e) ,
would be equivalent. However, there are some circumstances when the result of evaluating
one might differ from the other. More specifically, side effects may cause problems. To
demonstrate this, write an expression of the form (...e ...) so that when the e is changed
to (future e) , the expression’s value or behavior might be different because of side effects,
and explain why. Do not be concerned with the efficiency of either computation or the degree
of parallelism.

(c) Side effects are not the only cause for different evaluation results. Write a Pure Lisp ex-
pression of the form (...e" ...) so that when the e’ is changed to (future e’) , the
expression’s value or behavior might be different, and explain why.

