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Chapter 4. Fundamentals 
 
This chapter provides some background on programming language implementation, 
through brief discussions of syntax, parsing, and the steps used in conventional 
compilers. We also look at two foundational frameworks that are useful in programming 
language analysis and design: lambda calculus and denotational semantics. Lambda 
calculus is a good framework for defining syntactic concepts common to many 
programming languages and for studying symbolic evaluation. Denotational semantics 
shows that in principle, programs can be reduced to functions.  

A number of other theoretical frameworks are useful in the design and analysis of 
programming languages. These range from computability theory, which provides some 
insight into the power and limitations of programs, to type theory, which includes aspects 
of both syntax and semantics of programming languages. In spite of many years of 
theoretical research, the current programming language theory still does not provide 
answers to some important foundational questions. For example, we do not have a good 
mathematical theory that includes higher-order functions, state transformations and 
concurrency. Nonetheless, theoretical frameworks have had an impact on the design of 
programming languages and can be used to identify problem areas in programming 
languages. To compare one aspect of theory and practice, we will compare functional and 
imperative languages in the last section of this chapter. 

4.1 Compilers and Syntax 
A program is a description of a dynamic process. The text of a program itself is called its 
syntax; the things a program does are its semantics. The function of a programming 
language implementation is to transform program syntax into machine instructions that 
can be executed to cause the correct sequence of actions to occur.  

4.1.1 Structure of a simple compiler 
Programming languages that are convenient for people to use are built around concepts 
and abstractions that may not correspond directly to features of the underlying machine. 
For this reason, a program must be translated into the basic instruction set of the machine 
before it can be executed. This can be done by a compiler, which translates the entire 
program into machine code before the program is run, or an interpreter, which combines 
translation and program execution. We will discuss programming language 
implementation using compilers, since this makes it easier to separate the main issues and 
discuss them in order.  

The main function of a compiler is illustrated in this simple diagram: 
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Given a program in some source language, the compiler produces a program in a target 
language, which is usually the instruction set, or machine language, of some machine.  

Most compilers are structured as a series of phases, each phase performing one step in the 
translation of source program to target program. A typical compiler might consist of the 
phases shown in the following diagram: 

 

We will discuss each of these phases briefly. Our goal in this book is only to understand 
the parts of a compiler so that we can discuss how different programming language 
features might be implemented. We will not discuss how to build a compiler. That is the 
subject of many books on compiler construction, such as Compilers: Principles, 
Techniques and Tools by Aho, Sethi, and Ullman (Addison-Wesley, 1986), and Modern 
Compiler Implementation in Java/ML/C by Appel (Cambridge University Press, 1998).  
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Lexical Analysis 
The input symbols are scanned and grouped into meaningful units called tokens. For 
example, lexical analysis of the expression temp := x+1, which uses Algol-style notation := 
for assignment, would divide this sequence of symbols into five tokens: the identifier 
temp, the assignment “symbol”  :=, the variable x,  the addition symbol +, and the number 
1. Lexical analysis can distinguish numbers from identifiers. But since lexical analysis is 
based on a single left to right (and top to bottom) scan, lexical analysis does not 
distinguish between identifiers that are names of variables and identifiers that are names 
of constants. Since variables and constants are declared differently, variables and 
constants are distinguished in the semantic analysis phase. 

Syntax Analysis 
In this phase, tokens are grouped into syntactic units such as expressions, statements, and 
declarations that must conform to the grammatical rules of the programming language. 
The action performed during this phase, called parsing, is described in Section 4.1.2. The 
purpose of parsing is to produce a data structure called a parse tree, which represents the 
syntactic structure of the program in a way that is convenient for subsequent phases of 
the compiler. If a program does not meet the syntactic requirements to be a well-formed 
program, then the parsing phase will produce an error message and terminate the 
compiler.  

Semantic Analysis 
In this phase of a compiler, rules and procedures that depend on the context surrounding 
an expression are applied. For example, returning to our sample expression temp := x+1, it 
is necessary to make sure that the types match. If this assignment occurs in a language 
where integers are automatically converted to floats as needed, then there are several 
ways that types could be associated with parts of this expression. In standard semantic 
analysis, the types of temp and x would be determined from the declarations of these 
identifiers. If these are both integers, then the number 1 could be marked as an integer, + 
marked as integer addition, and the expression would be considered correct. If one of the 
identifiers, say x, is a float, then the number 1 would be marked as float and + marked as 
floating-point addition. Depending on whether temp is float or integer, it might also be 
necessary to insert a conversion around the subexpression x+1. The output of this phase is 
an augmented parse tree that represents the syntactic structure of the program and 
includes additional information like the types of identifiers and the place in the program 
where each identifier is declared. 

Although the phase following parsing is commonly called semantic analysis this use of 
the word “semantic” is different from the standard use of the term for “meaning.” Some 
compiler writers use the word semantic because this phase relies on context information, 
and the kind of grammar used for syntactic analysis does not capture context information. 
However, in the rest of this book, we will use the word semantics to refer to how a 
program executes, not the essentially syntactic properties that arise in the third phase of a 
compiler. 
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Intermediate Code Generation 
Although it might be possible to generate a target program from the results of syntactic 
and semantic analysis, it is difficult to generate efficient code in one phase. Therefore, 
many compilers first produce an intermediate form of code and then optimize this code to 
produce a more efficient target program.  

Since the last phase of the compiler can translate one set of instructions to another, the 
intermediate code does not need to be written using the actual instruction set of the target 
machine. It is important to use an intermediate representation that is easy to produce and 
easy to translate into the target language. The intermediate representation can be some 
form of generic low-level code that has properties common to several computers. By 
using a single generic intermediate representation, it is possible to use essentially the 
same compiler to generate target programs for several different machines.  

Code Optimization 
There are a variety of techniques that may be used to improve the efficiency of a 
program. These are usually applied to the intermediate representation. If several 
optimization techniques are written as transformations of the intermediate representation, 
then these techniques can be applied over and over until some termination condition is 
reached. 

Some standard optimizations are: 

• Common subexpression elimination: if a program calculates the same value more 
than once, and the compiler can detect this, then it may be possible to transform the 
program so that the value is calculated only once and stored for subsequent use. 

• Copy propagation: if a program contains an assignment like x=y, then it may be 
possible to change subsequent statements to refer to y instead of x and eliminate the 
assignment. 

• Dead code elimination: if some sequence of instructions can never be reached, then it 
can be eliminated from the program. 

• Loop optimizations: there are several techniques that can be applied to remove 
instructions from loops. For example, if some expression appears inside a loop, but 
has the same value on each pass through the loop, then the expression can be moved 
outside the loop. 

• In-lining function calls: if a program calls function f, it is possible to substitute the 
code for f into the place where f is called. This makes the target program more 
efficient, since the instructions associated with calling a function can be eliminated, 
but increases the size of the program. The most important consequence of in-lining 
function calls is usually that it allows other optimizations to be performed by 
removing jumps from the code. 
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Code Generation 
The final phase of a standard compiler is to convert the intermediate code into target 
machine code. This involves choosing a memory location and/or register for each 
variable that appears in the program. There are a variety of register allocation algorithms 
that try to reuse registers efficiently. This is important since many machines have a fixed 
number of registers, and operations on registers are more efficient than transferring data 
into and out of memory. 

4.1.2 Grammars and parse trees 
We will use grammars to describe various languages in this book. Although we will not 
usually be too concerned about the pragmatics of parsing, we will take a brief look in this 
section at the problem of producing a parse tree from a sequence of tokens. 

Grammars 
Grammars provide a convenient method for defining infinite sets of expressions. In 
addition, the structure imposed by a grammar gives us a systematic way of processing 
expressions. 

A grammar consists of a start symbol, a set of nonterminals, a set of terminals, and a set 
of productions. The nonterminals are symbols that are used to write out the grammar, 
while the terminals are symbols that appear in the language generated by the grammar. In 
books on automata theory and related subjects, the productions of a grammar are written 
in the form s → tu, with an arrow, meaning that in a string containing the symbol s, we 
can replace s by the symbols tu. However, we will use a more compact notation 
commonly referred to as BNF.  

We will illustrate the main ideas by example. A simple language of numeric expressions 
is defined by the following grammar: 

e  ::=  n  |  e+e  |  e−e   

n  ::=  d  |  nd 

d  ::=  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9 

where e is the start symbol, symbols e, n, and d are nonterminals, and 0, 1, 2, 3, 4, 5, 6, 7, 8, 
9, +, - are the terminals. The language defined by this grammar consists of all the 
sequences of terminals that can be produced by starting with the start symbol, e, and 
replacing nonterminals according to the productions above. For example, the first 
production above means that we can replace an occurrence of e by either the symbol n, 
the three symbols e+e, or the three symbols e-e. The process can be repeated, using any 
of the three lines above.  

Some expressions in the language given by this grammar are 

0,  1 + 3 + 5,  2 + 4 − 6 − 8 

Sequences of symbols that contain nonterminals, such as 

e,  e + e,  e + 6 − e 
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are not expressions in the language given by the grammar. The purpose of nonterminals 
is to keep track of the form of an expression as it is being formed. All nonterminals must 
be replaced by terminals in order to produce a well-formed expression of the language. 

Derivations 
A sequence of replacement steps resulting in a string of terminals is called a derivation. 

Here are two derivations in this grammar, the first given in full and the second with a few 
missing steps that can be filled in by the reader (be sure you understand how!):  

e  →  n  →  nd  →  dd  →  2d  →  25 

e  →  e − e  →  e − e+e  →   …   →  n−n+n   →   …   →  10−15+12 

Parse Trees and Ambiguity 
It is often convenient to represent a derivation by a tree. This tree, called the parse tree of 
a derivation, or derivation tree, is constructed using the start symbol as the root of the 
tree. If a step in the derivation is to replace s by x1, …xn, then the children of s in the tree 
will be nodes labeled x1, …xn.  

The parse tree for the derivation of 10−15+12 above has some useful structure. 
Specifically, since the first step yields e−e, the parse tree has the form  

 

where we have contracted the subtrees for each two-digit number to a single node. This 
tree is different from 

e 

e e − 

e e + 

12 

10 

15 
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which is another parse tree for the same expression. An important fact about parse trees is 
that each corresponds to a unique parenthesization of the expression. Specifically, the 
first tree above corresponds to 10− (15+12) while the second corresponds to (10−15)+12. 
As this example illustrates, the value of an expression may depend on how it is parsed or 
parenthesized.  

A grammar is ambiguous if some expression has more than one parse tree. If every 
expression has at most one parse tree, the grammar is unambiguous. 

Example 4.1 There is an interesting ambiguity involving if-then-else. This can be 
illustrated using the following simple grammar: 

s  ::=  v := e  |  s;s  |  if b then s  |  if b then s else s 

v  ::=  x  |  y  |  z   

e  ::=  v  |  0  |  1  |  2  |  3  |  4 

b  ::=  e=e 

where s is the start symbol, s, v, e, and b are nonterminals, and the other symbols are 
terminals. The letters s, v, e and b stand for “statement”, “variable”, “expression”, and 
“boolean test”. We will call the expressions of the language generated by this grammar 
statements. Here is an example of a well-formed statement and one of its parse trees: 

x := 1; y := 2; if x=y then y := 3  

e 

e e + 

e e − 

15 

12 

10 

s 

s 

e v := 

2 y 

if 

s 

e v := 

3 y 

s 

e e = 

y x 

s 

b then s 

e v := 

1 x 



 56

This statement also has another parse tree, obtained by putting two assignments to the left 
of the root and the if-then statement to the right. However, the difference between these 
two parse trees will not affect the behavior of code generated by an ordinary compiler. 
The reason is that s1;s2 is normally compiled to the code for s1 followed by the code for 
s2. As a result, the same code would be generated whether we consider s1;s2;s3 as (s1;s2);s3 
or s1;(s2;s3). 

A more complicated situation arises when if-then is combined with if-then-else in the 
following way: 

if  b1 then if b2 then s1 else s2 

What should happen if b1 is true and b2 is false? Should s2 be executed or not? As you can 
see, this depends on how the statement is parsed. A grammar that allows this combination 
of conditionals is ambiguous, with two possible meanings for statements of this form. 

4.1.3 Parsing and precedence 
Parsing is the process of constructing parse trees for sequences of symbols. Suppose we 
define a language, L, by writing out a grammar, G.  Then given a sequence of symbols, s, 
we would like to determine if s is in the language L. If so, then we would like to compile 
or interpret s, and for this purpose we would like to find a parse tree for s. An algorithm 
that decides whether s is in L, and constructs a parse tree if it is, is called a parsing 
algorithm for G. 

There are many methods for building parsing algorithms from grammars. Many of these 
work only for particular forms of grammars. Since parsing is an important part of 
compiling programming languages, parsing is usually covered in courses and textbooks 
on compilers. For most programming languages you might consider, it is either 
straightforward to parse the language, or there are some changes in syntax that do not 
change the structure of the language very much but make it possible to parse the language 
efficiently. 

Two issues we consider briefly are the syntactic conventions of precedence and right- or  
left-associativity. These are illustrated briefly in the following example: 

Example 4.2 A programming language designer might decide that expressions should 
include addition, subtraction, and multiplication and write the following grammar: 

e  ::=  0  |  1  |  e+e  |  e–e  |  e*e 

This grammar is ambiguous, since many expressions have more than one parse tree. For 
expressions such as 1-1+1, the value of the expression will depend on the way it is 
parsed. One solution to this problem is to require complete parenthesization. In other 
words, we could change the grammar to 

e  ::=  0  |  1  |  (e+e)  |  (e–e)  |  (e*e) 

so that it is no longer ambiguous. However, as you know, it can be awkward to write a lot 
of parentheses. In addition, for many expressions, such as 1+2+3+4, the value of the 
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expression does not depend on the way it is parsed. Therefore, it is unnecessarily 
cumbersome to require parentheses for every operation. 

The standard solution to this problem is to adopt parsing conventions that specify a single 
parse tree for every expression. These are called precedence  and associativity.  For this 
specific grammar, a natural precedence convention is that multiplication (*), has a higher 
precedence than addition (+) and subtraction (–). Precedence is incorporated into parsing 
by treating an unparenthesized expression e op1 e op2 e as if parentheses are inserted 
around the operator of higher precedence. With this rule in effect, the expression 5*4 – 3 
will be parsed as if it were written (5*4) – 3. This coincides with the way that most of us 
would ordinarily think about the expression 5*4 – 3. Since there is no standard way that 
most readers would parse 1+1–1, we might give addition and subtraction equal 
precedence. In this case, a compiler could issue an error message requiring the 
programmer to parenthesize 1+1–1. Alternatively, an expression like this could be 
disambiguated by using an additional convention. 

Associativity comes into play when two operators of equal precedence appear next to 
each other. Under left-associativity, an expression e op1 e op2 e would be parsed as (e op1 
e) op2 e, if the two operators have equal precedence. If we adopted a right-associativity 
convention instead, e op1 e op2 e would be parsed as e op1 (e op2  e). 

 

Expression  Precedence  Left-Associativity Right-Associativity 

5*4 – 3 (5*4) – 3 (no change) (no change) 

1+1–1 (no change) (1+1) – 1 1 + (1–1) 

2+3–4*5+2 2+3–(4*5)+2 ((2+3)–(4*5))+2 2+(3–((4*5)+2)) 

 

4.2 Lambda Calculus 
Lambda calculus is a mathematical system that illustrates some important programming 
language concepts in a simple, pure form. Traditional lambda calculus has three main 
parts: a notation for defining functions, a proof system for proving equations between 
expressions, and a set of calculation rules called reduction. The first word in the name 
lambda calculus comes from the use of the Greek letter lambda (λ) in function 
expressions. (There is no significance to the letter λ.) The second word comes from the 
way that reduction may be used to calculate the result of applying a function to one or 
more arguments. This calculation is a form of symbolic evaluation of expressions.  

Lambda calculus provides a convenient notation for describing programming languages 
and may be regarded as the basis for many language constructs. In particular, lambda 
calculus provides fundamental forms of parameterization (via function expressions) and 
binding (via declarations). These are basic concepts that are common to almost all 
modern programming languages. It is therefore useful to become familiar enough with 
lambda calculus to see expressions in your favorite programming language as essentially 
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a form of lambda expression. For simplicity, we will discuss the untyped lambda 
calculus; there are also typed versions of lambda calculus. In typed lambda calculus, 
there are additional type-checking constraints that rule out certain forms of expressions. 
However, the basic concepts and calculation rules remain essentially the same. 

4.2.1 Functions and function expressions 
Intuitively, a function is a rule for determining a value from an argument. This view 
of functions is used informally in most mathematics. (See Section 2.1.2 for a 
discussion of functions in mathematics.) Some examples of functions studied in 
mathematics are  

f x x( ) = +2 3  

and 

g x y x y( , ) = +2 2  

In the simplest, pure form of lambda calculus, there are no domain-specific operators 
such as addition and exponentiation, only function definition and application. This allows 
us to write functions like  

h x f g x( ) ( ( ))=  

since h is defined solely in terms of function application and other functions that we 
assume are already defined. It is possible to add operations such as addition and 
exponentiation to pure lambda calculus. While purists stick to pure lambda calculus 
without addition and multiplication, we will use these operations in examples since this 
makes the functions we define more familiar. 

The main constructs of lambda calculus are lambda abstraction and application. We use 
lambda abstraction to write functions: if M is some expression, then λx.M is the function 
we get by treating M as a function of the variable x. For example,  

 λx.x 

is a lambda abstraction defining the identity function, the function whose value at x is x. 
A more familiar way of defining the identity function is by writing  

 I(x)  =  x 

However, this way of defining a function forces us to make up a name for every function 
we want. Lambda calculus lets us write anonymous functions and use them inside larger 
expressions.  

In lambda notation, it is traditional to write function application just by putting a function 
expression in front of one or more arguments; parentheses are optional. For example, we 
can apply the identity function to the expression M by writing  

 (λx.x) M 
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The value of this application is the identity function, applied to M, which just ends up 
being M. Thus we have  

 (λx.x) M  =  M 

Part of lambda calculus is a set of rules for deducing equations like this. Another example 
lambda expression is  

 λf. λg. λx. f(g x) 

Given functions f and g, this function produces the composition λx. f(g x) of f and g.  

We can extend pure lambda calculus by adding a variety of other constructs. We will call 
an extension of pure lambda calculus with extra operations an applied lambda calculus. 
A basic idea underlying the relation between lambda calculus and computer science is the 
slogan  

 Programming language =   applied λ-calculus 

      =   pure λ-calculus + additional data types 

This even works for programming languages with side-effects, since the way a program 
depends on the state of the machine can be represented using explicit data structures for 
the machine state. This is one of the basic ideas behind Scott-Strachey denotational 
semantics, as discussed in Section 4.3.  

4.2.2 Lambda expressions 
Syntax of expressions 
The syntax of untyped lambda expressions may be defined using a BNF grammar. We 
assume we have some infinite set V of variables and use x,y,z, … to stand for arbitrary 
variables. The grammar for lambda expressions is  

 M  ::=  x  |  MM  |  λx.M 

where x may be any variable (element of V). An expression of the form M1M2  is called an 
application, and an expression of the form λx.M is called a lambda abstraction. 
Intuitively, a variable x refers to some function, the particular function being determined 
by context; M1M2  is the application of function M1 to argument M2; and λx.M is the 
function which, given argument x, returns the value M. In the lambda calculus literature, 
it is common to refer to the expressions of lambda calculus as lambda terms. 

Here are some example lambda terms:  

λx.x A lambda abstraction called the identity function. 

λx.(f (g x)) Another lambda abstraction. 

(λx.x) 5 An application. 
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There are a number of syntactic conventions that are generally convenient for lambda 
calculus experts but confusing to learn. These can generally be avoided by writing 
enough parentheses. One convention that we will use, however, is that in an expression 
containing a λ, the scope of λ extends as far to the right as possible. For example, λx. xy 
should be read as λx.(x y), not (λx.x) y.  

Variable Binding 
An occurrence of a variable in an expression may be either free or bound. If a variable is 
free in some expression, this means that the variable is not declared in the expression. For 
example, the variable x is free in the expression x+3. We cannot evaluate the expression 
x+3 as it stands, without putting it inside some larger expression that will associate some 
value with x. If a variable is not free, then that must be because it is bound. 

The symbol λ is called a binding operator, since it binds a variable within a specific 
scope (part of an expression). The variable x is bound in λx.M. This means that x is just a 
place holder, like x in the integral  ∫ f(x) dx  or the logical formula  ∀x.P(x), and the 
meaning of λx.M does not depend on x. Therefore, just as ∫ f(x) dx and  ∫ f(y) dy describe 
the same integral, we can rename a λ-bound x to y without changing the meaning of the 
expression. In particular,  

λx.x   defines the same function as  λy.y 

Expressions that differ only in the names of bound variables are called α-equivalent. 
When we want to emphasize that two expressions are α-equivalent, we write λx.x =α 
λy.y, for example. 

In λx.M, the expression M is called the scope of the binding λx. A variable x appearing in 
an expression M is bound if it appears in the scope of some λx, and free otherwise. To be 
more precise about this, we may define the set FV(M) of free variables of M by induction 
on the structure of expressions, as follows:  

FV(x) = { x } 

FV(MN) = FV(M) ∪ FV(N) 

FV(λx. M) = FV(M) − x 

where − here means set difference, that is,  S−x = {y∈S | y ≠x }. For example, FV(λx.x) 
= ∅ since there are no free variables in λx.x, while FV(λf. λx. (f (g (x)))) = {g}.  

It is sometimes necessary to talk about different occurrences of a variable in an 
expression, and to distinguish free and bound occurrences. In the expression  

 λx. (λy.xy) y 

the first occurrence of x is called a binding occurrence, since this is where x becomes 
bound. The other occurrence of x is a bound occurrence. Reading from left to right, the 
first occurrence of y is a binding occurrence, the second is a bound occurrence, and the 
third is free since it is outside the scope of the λy in parentheses.  
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It can be confusing to work with expressions that use the same variable in more than one 
way. A useful convention is to rename bound variables so that all bound variables are 
different from each other and different from all of the free variables. Following this 
convention, we will write (λy. (λz.z)y) x  instead of (λx. (λx.x)x) x. The variable 
convention will be particularly useful when we come to equational reasoning and 
reduction.  

Lambda Abstraction in Lisp and Algol 
Lambda calculus has an obvious syntactic similarity to Lisp: the Lisp lambda expression  

(lambda (x)  function_body  ) 

looks like the lambda calculus expression  

λx.  function_body   

and both expressions define functions. However, there are some differences between Lisp 
and lambda calculus. For example, lists are the basic data type of Lisp, while functions 
are the only data type in pure lambda calculus. Another difference is evaluation order, but 
we will not go into that topic in detail. 

Although the syntax of block-structured languages is farther from lambda calculus than 
Lisp, the basic concepts of declarations and function parameterizations in Algol-like 
languages are fundamentally the same as in lambda calculus. For example, the C program 
fragment  

int f (int x) { return x}; 

block_body; 

 

with a function declaration at the beginning of a block is easily translated into lambda 
calculus. The translation is easier to understand if we first add declarations to lambda 
calculus.  

The simple let declaration  

let x = M in N 

which declares that x has value M in the body N may be regarded as syntactic sugar for a 
combination of lambda abstraction and application: 

let x = M in N     is sugar for       (λx. N) M 

For those not familiar with the concept of syntactic sugar, this means that let x = M in N 
is “sweeter” to write in some cases, but we can just think of the syntax let x = M in N  as 
standing for (λx. N) M.  

Using let declarations, we can write the C program from above as  

let f =  (λx. x) in  block_body    
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Notice that the C form expression and the lambda expression have the same free and 
bound variables, and similar structure. One difference between C and λ-calculus is that C 
has assignment statements and side effects, whereas λ-calculus is purely functional. 
However, by introducing stores, mappings from variable locations to values, we can 
translate C programs with side-effects into lambda terms as well. The translation 
preserves the overall structure of programs, but makes programs look a little more 
complicated since the dependencies on the state of the machine are explicit.  

Equivalence and Substitution 
We have already discussed α-equivalence of terms. This is one of the basic axioms of 
lambda calculus, meaning that it is one of the properties of lambda terms that defines the 
system and that is used in proving other properties of lambda terms. Stated more 
carefully than before, the equational proof system of lambda calculus has the equational 
axiom  

λx.M = λy.[y/x]M       (α) 

 where [y/x]M is the result of substituting y for free occurrences of x in M, and y cannot 
already appear in M. There are three other equational axioms and four inference rules for 
proving equations between terms. However, we will only look at one other equational 
axiom. 

The central equational axiom of lambda calculus is used to calculate the value of a 
function application (λx. M) N by substitution. Since λx. M is the function we get by 
treating M as a function of x, we can write the value of this function at N by substituting 
N for x. Again writing [N/x]M for the result of substituting N for free occurrences of x in 
M, we have  

(λx.M) N = [N/x]M         (β) 

which is called the axiom of β-equivalence. Some important warnings about substitution 
are discussed below. The value of λf. fx applied to λy. y may be calculated by substituting 
the argument λy. y in for the bound variable f:  

(λf. fx )(λy. y)   =   (λy. y) x 

Of course, (λy. y) x may be simplified by an additional substitution, and so we have  

(λf. fx )(λy. y)   =   (λy. y) x   =   x 

Any readers old enough to be familiar with the original documentation of Algol 60 will 
recognize β-equivalence as the copy rule for evaluating function calls. There are also 
parallels between (β) and macro expansion and in-line substitution of functions. 

Renaming Bound Variables 
Since λ-bindings in M can conflict with free variables in N, substitution [N/x]M is a little 
more complicated than one might think at first. However, all of the complications can be 
avoided by following the variable convention: rename bound variables in (λx.M) N so 
that all of the bound variables are different from each other and different from all of the 
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free variables. For example, let us reduce the term (λf.  λx. f (f x))  (λy. y+x). If we first 
rename bound variables and then perform β-reduction, then we get 

 (λf.  λz. f (f z))  (λy. y+x)   =  λz.(  (λy. y+x) ((λy. y+x) z))  )  =  λz. z+x+x 

If we were to forget to rename bound variables and substitute blindly, we might simplify 
as follows: 

(λf.  λx. f (f x))  (λy. y+x)   =   λx. (  (λy. y+x) ((λy. y+x) x)  )   =   λx. x+x+x 

However, you should be suspicious of the second reduction because the variable x is free 
in (λy. y+x), but becomes bound in λx. x+x+x.  Remember: in working out [N/x]M, we 
must rename any bound variables in M that might be the same as free variables in N.  

To be precise about renaming bound variables in substitution, we will define the result 
[N/x]M of substituting N for x in M by induction on the structure of M.  

[N/x]x = N 

[N/x]y = y                                     where y is any variable different from x 

[N/x](M1M2) = ([N/x] M1) ([N/x]M2) 

[N/x] (λx.M) = λx.M 

[N/x] (λy.M) =  λy. ([N/x]M)        where y is not free in N 

Since we are free to rename the bound variable y in λy.M, the final clause λy. ([N/x]M) 
always makes sense. With this precise definition of substitution, we now have a precise 
definition of β-equivalence.  

4.2.3 Programming in lambda calculus 
Lambda calculus may be viewed as a simple functional programming language. We will 
see that even though the language is very simple, we can program fairly naturally if we 
adopt a few abbreviations. Before discussing declarations and recursion, it is worth 
mentioning the problem of multi-argument functions.  

Functions of several arguments 
Lambda abstraction lets us treat any expression M as a function of any variable x by 
writing λx.M. But what if we want to treat M as function of two variables x and y? Do we 
need a second kind of lambda abstraction λ2x,y.M to treat M as function of the pair of 
arguments x, y? Although we could add lambda operators for sequences of formal 
parameters, we will not need to because ordinary λ-abstraction will suffice for most 
purposes.  

We may represent a function f of two arguments by a function λx.(λy.M) of a single 
argument which, when applied, returns a second function that accepts a second argument 
and then computes a result in the same way as f. For example, the function  

f(g,x) = g(x)  
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has two arguments, but can be represented in lambda calculus using ordinary lambda 
abstraction. We define fcurry by  

fcurry  = λg. λx.gx  

The difference between f and fcurry is that f takes a pair (g, x) as an argument, while fcurry 
takes a single argument g. However, fcurry can be used in place of f since  

fcurry  g x   =   gx   = f(g,x) 

Thus, in the end, fcurry does the same thing as f. This simple idea was discovered by 
Schönfinkel, who investigated functionality in the 1920s. However, this technique for 
representing multi-argument functions in lambda calculus is usually called Currying, 
after the lambda calculus pioneer Haskell Curry.  

Declarations 
We saw earlier that we can regard simple let declarations  

let x = M in N 

as lambda terms by adopting the abbreviation  

let x = M in N    =     (λx.N) M 

The let construct may be used to define a composition function, as in the expression  

Let  compose  =  λf. λg. λx. f (gx)  in  compose h h  

Using β-equivalence, we can simplify this let expression to λx. h (hx), the composition of 
h with itself. In programming language parlance, the let construct provides local 
declarations.  

Recursion and Fixed Points 
An amazing fact about pure lambda calculus is that it is possible to write recursive 
functions using a self-application “trick.” This does not have a lot to do with comparisons 
between modern programming languages, but it may interest readers with a technical 
bent. (Some readers and some instructors may wish to skip this section.) 

Many programming languages allow recursive function definitions. The characteristic 
property of a recursive definition of a function f is that the body of the function contains 
one or more calls to f. To choose a specific example, let us suppose we define the 
factorial function in some programming language by writing a declaration like  

function f(n) { if n=0 then 1 else n*f(n-1)}; 

where the body of the function is the expression inside braces. This definition has a 
straightforward computational interpretation: when f is called with argument a, the 
function parameter n is set to a and the function body is evaluated. If evaluation of the 
body reaches the recursive call, then this process is repeated. As the definition of a 
computational procedure, recursive definitions are clearly meaningful and useful. 

One way to understand the lambda calculus approach to recursion is to associate an 
equation with a recursive definition. For example, we can associate the equation  
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f(n)  =   if n=0 then 1 else n*f(n-1) 

with the recursive declaration above. This equation states a property of factorial. 
Specifically, the value of the expression f(n) is equal to the value of the expression  if n=0 
then 1 else n*f(n-1) when f is the factorial function. The lambda calculus approach may be 
viewed as a method of finding solutions to equations in which an identifier (the name of 
the recursive function) appears on both sides of the equation. 

We can simplify the equation above by using lambda abstraction to eliminate n from the 
left-hand side. This gives us 

f  =   λn. if n=0 then 1 else n*f(n-1) 

Now consider the function G obtained by moving f to the right-hand-side of the equation. 

G   =   λf.  λn. if n=0 then 1 else n*f(n-1) 

Although it might not be clear what sort of “algebra” is involved in this manipulation of 
equations, it is possible to check, using lambda calculus reasoning and basic 
understanding of function equality, that the factorial function f satisfies the equation 

f = G(f) 

This shows that recursive declarations involve finding fixed points. 

A fixed point of a function G is a value f such that f = G(f). In lambda calculus, fixed 
points may be defined using the fixed-point operator  

Y   =   λf.  ( λx. f (xx)) ( λx. f (xx)) 

The surprising fact about this perplexing lambda expression is that for any f, the 
application Yf is a fixed-point of f. We can see this by calculation. By β-equivalence, we 
have 

Y f  = ( λx. f (xx)) ( λx. f (xx)) 

Using β-equivalence again on the right-hand term, we get  

Y f  = ( λx. f (xx)) ( λx. f (xx))   =   f ( λx. f (xx)) ( λx. f (xx))   =   f(Yf) 

Thus Yf is a fixed point of f.  

Example 4.3 We can define factorial by fact = YG, where lambda terms Y and G are 
given above, and calculate fact 2 = 2! using the calculation rules of lambda calculus. Here 
are the calculation steps representing the first “call” to factorial. 

fact 2 = (YG) 2 

= G (YG)  2 

= (λf. λn. if n=0 then 1 else n*f(n-1))  (YG)   2 

= (λn. if n=0 then 1 else n*((YG)(n-1))   2 

=  if 2=0 then 1 else 2*((YG) (2-1)) 
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=  if 2=0 then 1 else 2*((YG)  1) 

= 2*((YG) 1) 

Using similar steps, we can calculate  (YG)  1 = 1! = 1 to complete the calculation. 

It is worth mentioning that Y is not the only lambda term that finds fixed points of 
functions. There are other expressions that would work as well. However, this particular 
fixed-point operator played an important role in the history of lambda calculus. 

4.2.4 Reduction, confluence and normal forms 
The computational properties of lambda calculus are usually described using a form of 
symbolic evaluation called reduction. In simple terms, reduction is equational reasoning, 
but in a certain direction. Specifically, although β-equivalence was written as an 
equation, we have generally used it in one direction to “evaluate” function calls. If we 
write → instead of =, to indicate the direction we intend to use the equation, then we 
obtain the basic computation step called β-reduction: 

(λx.M) N → [N/x]M         (β) 

We say M β-reduces to N, and write M→N, if N is the result of applying one β-reduction 
step somewhere inside M. Most of the examples of calculation in this section use β-
reduction, i.e., β-equivalence is used from left to right rather than right to left. For 
example, 

(λf.  λz. f (f z))  (λy. y+x) →  λz.(  (λy. y+x) ((λy. y+x) z))  ) →  λz. z+x+x. 

Normal Forms 
Intuitively, we think of M→N as meaning that in one computation step, the expression M 
can be evaluated to the expression N. Generally, this process can be repeated, as 
illustrated above. However, for many expressions, the process eventually reaches a 
stopping point. A stopping point, or expression that cannot be further evaluated, is called 
a normal form. Here is an example reduction sequence leading to a normal form:  

(λf.  λx. f (f x))  (λy. y+1)  2   

→  (λx. (λy. y+1) ((λy. y+1) x))   2 

→  (λx. (λy. y+1) (x+1))   2 

→  (λx. (x+1+1))   2 

→ (2+1+1) 

This last expression is a normal form if our only computation rule is β-reduction, but not 
a normal form if we have a computation rule for addition. Assuming the usual evaluation 
rule for expressions with addition, we can continue with 

2+1+1 

→ 3+1 
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→ 4 

This example should give you a good idea of how reduction in lambda calculus 
corresponds to computation. Since the 1930s, lambda calculus has been a simple 
mathematical model of expression evaluation. 

Confluence 
In our example starting with (λf.  λx. f (f x))  (λy. y+1)  2, there were some steps where 
we had to chose from several possible subexpressions to evaluate. For example, in the 
second expression,  

(λx. (λy. y+1) ((λy. y+1) x))   2 

we could have evaluated either of the two function calls beginning with λy. This is not an 
artifact of lambda calculus itself, since we also have two choices in evaluating the purely 
arithmetic expression 

2+1+1 

An important property of lambda calculus is called confluence. In lambda calculus, as a 
result of confluence, evaluation order does not affect the final value of an expression. Put 
another way, if an expression M can be reduced to a normal form, then there is exactly 
one normal form of M, independent of the order in which we choose to evaluate 
subexpressions. While the full mathematical statement of confluence is a bit more 
complicated than this, the important thing to remember is that in lambda calculus, 
expressions can be evaluated in any order. 

4.2.5 Important properties of lambda calculus 
In summary, the lambda calculus is a mathematical system with some syntactic and 
computational properties of a programming language. There is a general notation for 
functions that includes a way of treating an expression as a function of some variable that 
it contains. There is an equational proof system that leads to calculation rules, and these 
calculation rules are a simple form of symbolic evaluation. In programming language 
terminology, these calculation rules are a form of macro expansion (with renaming of 
bound variables!) or function in-lining. Because of the relation to in-lining, some 
common compiler optimizations may be defined and proved correct using lambda 
calculus. 

Some important properties of lambda calculus are: 

§ Every computable function can be represented in pure lambda calculus. In the 
terminology of Chapter 2, lambda calculus is Turing complete. (Numbers can be 
represented by functions, and recursion can be expressed using Y.) 

§ Evaluation in lambda calculus is order-independent. Due to confluence, we can 
evaluate an expression by choosing any subexpression. Evaluation in pure functional 
programming languages (see Section 4.4) is also confluent, but evaluation in 
languages whose expressions may have side effects is not confluent. 
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Macro expansion is another setting in which a form of evaluation is confluent. If we start 
with a program containing macros and expand all macro calls with the macro bodies, then 
the final fully-expanded program we obtain will not depend on the order in which macros 
are expanded.  

4.3 Denotational Semantics 
In computer science, the phrase denotational semantics refers to a specific style of 
mathematical semantics for imperative programs. This approach was developed in the 
late 1960s and early 1970s, following the pioneering work of Christopher Strachey and 
Dana Scott at Oxford University. The term “denotational semantics” suggests that a 
meaning or denotation is associated with each program or program phrase (expression, 
statement, declaration, etc.). The denotation of a program is a mathematical object, 
typically a function, as opposed to an algorithm or sequence of instructions to execute. 

In denotational semantics, the meaning of a simple program like  

x := 0; y:=0; while x ≤ z do y := y+x; x := x+1 

is a mathematical function from states to states, where a state is a mathematical function 
representing the values in memory at some point in the execution of a program. 
Specifically, the meaning of this program will be a function that maps any state in which 
the value of z is some non-negative integer n to the state in which x=n, y is the sum of all 
numbers up to n, and all other locations in memory are left unchanged. The function 
would not be defined on machine states in which the value of z is not a non-negative 
integer.  

Associating mathematical functions with programs is good for some purposes, and not so 
good for others. In many situations, we consider a program correct if we  get the correct 
output for any possible input. This form of correctness depends only on the denotational 
semantics of a program, the mathematical function from input to output associated with 
the program. For example, the program above was designed to compute the sum of all the 
non-negative integers up to n. If we verify that the actual denotational semantics of this 
program is this mathematical function, then we have proved that the program is correct. 
Some disadvantages of denotational semantics are that standard denotational semantics 
do not tell us anything about the running time or storage requirements of a program. This 
is sometimes an advantage in disguise, since by ignoring these issues, we can sometimes 
reason more effectively about the correctness of programs.  

Forms of denotational semantics are commonly used for reasoning about program 
optimization and static analysis methods. If we are interested in analyzing running time, 
then an operational semantics might be more useful, or we could use a more detailed 
denotational semantics that also involves functions representing time bounds. An 
alternative to denotational semantics is called operational semantics, which involves 
modeling machine states and (generally) the step-by-step state transitions associated with 
a program. Lambda calculus reduction is an example of operational semantics. 
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Compositionality 
An important principle of denotational semantics is that the meaning of a program is 
determined from its text compositionally. This means that the meaning of a program must 
be defined from the meanings of its parts, not something else like the text of its parts or 
the meanings of related programs obtained by syntactic operations. For example, the 
denotation of a program such as  if B then P else Q  must be explained using only the 
denotations of B, P and Q; it should not be defined using programs constructed from B, P 
and Q by syntactic operations such as substitution.  

The importance of compositionality, which may seem rather subtle at first, is that if two 
program pieces have the same denotation, then either may safely be substituted for the 
other in any program. More specifically, if B, P and Q have the same denotations as B', P' 
and Q' (respectively), then if B then P else Q must have the same denotation as if B’ then 
P’ else Q’. Compositionality means that the denotation of an expression or program 
statement must be detailed enough to capture everything that is relevant to its behavior in 
larger programs. This makes denotational semantics useful for understanding and 
reasoning about such pragmatic issues as program transformation and optimization, since 
these operations on programs involve replacing parts of programs without changing the 
overall meaning of the whole program. 

4.3.1 Object language and meta-language 
One source of confusion in talking (or writing) about the interpretation of syntactic 
expressions is that everything we write is actually syntactic. When we study a 
programming language, we need to distinguish the programming language we study from 
the language we use to describe this language and its meaning. The language we study is 
traditionally called the object language, since this is the object of our attention, while the 
second language is called the meta-language, because it transcends the object language in 
some way.  

To pick an example, let us consider the mathematical interpretation of a simple algebraic 
expression like 3 + 6 - 4 which might appear in a program written in C, Java or ML. The 
ordinary “mathematical” meaning of this expression is the number obtained by doing the 
addition and subtraction, namely 5. Here, the symbols in the expression 3 + 6 - 4 are in 
our object language, while the number 5 is meant to be in our meta-language. One way of 
making this clearer is to use an outlined number, such as , to mean “the mathematical 
entity called the natural number 1”. Then we can say that the meaning of the object 
language expression 3 + 6 - 4 is the natural number . In this sentence, the symbol is a 
symbol of the meta-language, while the expression 3 + 6 - 4 is written using symbols of 
the object language.  

4.3.2 Denotational semantics of binary numbers 
The following grammar for binary expressions is similar to the grammar for decimal 
expressions discussed in Section 4.1.2. 

e  ::=  n  |  e+e  |  e-e   



 70

n  ::=  b  | nb 

b  ::=  0  |  1   

We can give a mathematical interpretation of these expressions in the style of 
denotational semantics. In denotational semantics and other studies of programming 
languages, it is common to forget about how expressions are converted into parse trees, 
and just give the meaning of an expression as a function of its parse tree. 

We may interpret the expressions defined above as natural numbers using induction on 
the structure of parse trees. More specifically, we define a function from parse trees to 
natural numbers, defining the function on a compound expression by referring to its value 
on simpler expressions. A historical convention is to write [[e]] for any parse tree of the 
expression e. When we write [[e1+e2]], for example, we mean a parse tree of the form  

 

with [[e1]] and [[e2]] as immediate subtrees.  

Using this notation, we may define the meaning E[[e]] of an expression e, according to its 
parse tree [[e]], as follows: 

E[[0]] =  

E[[1]] =  

E[[nb]] = E[[n]] *    E[[b]] 

E[[e1+e2]] = E[[e1]]  E[[e2]] 

E[[e1 − e2]] = E[[e1]]  E[[e2]] 

In words, the value associated with a parse tree of the form [[e1+e2]], for example, is the 
sum of the values given to the subtrees [[e1]] and [[e2]]. This is not a circular definition 
since the parse trees [[e1]] and [[e2]] are smaller than the parse tree [[e1+e2]]. 

On the right of the equal signs, numbers and arithmetic operations *, + and - are meant to 
mean the actual natural numbers and the standard integer operations of multiplication, 
addition and subtraction. In contrast, the symbols + and - in expressions surrounded by 
double square brackets on the left of the equal signs are symbols of the object language, 
the language of binary expressions.  

4.3.3 Denotational semantics of while programs 
Without going into detail about the kinds of mathematical functions that are used, let us 
take a quick look at the form of semantics used for a simplified programming language 
with assignment and loops.  

e 

[[e2]] [[e1]] + 
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Expressions with variables 
Program statements contain expressions with variables. Here is a grammar for arithmetic 
expressions with variables. This is the same as the grammar in Section 4.1.2, except that 
expressions can contain variables in addition to numbers. 

e  ::=  v  |  n  |  e+e  |  e−e   

n  ::=  d  |  nd 

d  ::=  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9 

v  ::=  x | y | z | … 

In the simplified programming language we consider, the value of a variable depends on 
the state of the machine. We model the state of the machine by a function from variables 
to numbers and write E[[e]](s)  for the value of expression e in state s. The value of an 
expression in a state is defined as follows.  

E[[x]](s) = s(x) 

E[[0]](s) =  

E[[1]](s) = 

       =  

E[[9]](s) =  

E[[nd]](s) = E[[n]](s) *    E[[d]](s) 

E[[e1+e2]](s) = E[[e1]](s)  E[[e2]](s) 

E[[e1 − e2]](s) = E[[e1]](s)  E[[e2]](s) 

Notice that the state matters in the definition in the base case, the value of a variable. 
Otherwise, this is essentially the same definition as the semantics of variable-free 
expressions in the preceding subsection. 

The syntax and semantics of Boolean expressions can be defined similarly. 

While programs 
The language of while programs may be defined over any class of value expressions and 
boolean expressions. Without specifying any particular basic expressions, we may 
summarize the structure of while programs by the grammar  

P  ::=  x := e  |  P; P  |  if e then P else P  |  while e do P 

where we assume that x has the appropriate type to be assigned the value of e, in the 
assignment x :=e, and that the test e has type bool in if…then…else… and while statements. 
Since this language does not have explicit input or output, the effect of a program will be 
to change the values of variables. Here is a simple example: 

x := 0;   y:=0;   while  x ≤ z  do  (y := y+x; x := x+1) 

We may think of this program as having input z and output y. This program uses an 
additional variable x to set y to the sum of all natural numbers up to z.  



 72

States and Commands 
The meaning of a program is a function from states to states. In a more realistic 
programming language, with procedures or pointers, it is necessary to model the fact that 
two variable names may refer to the same location. However, in the simple language of 
while programs, we will assume that each variable is given a different location.  With this 
simplification in mind, we let the set State of mathematical representations of machine 
states be  

State  =  Variables  →  Values 

In words, a state is a function from variables to values. This is an idealized view of 
machine states in two ways: we do not explicitly model the locations associated with 
variables, and we use infinite states that give a value to every possible variable.  

The meaning of a program is an element of the mathematical set Command of 
commands, defined by  

Command  =  State  →  State 

In words, a command is a function from states to states. Unlike states themselves, which 
are total functions, a command may be a partial function. The reason we need partial 
functions is that a program might not terminate on an initial state. 

A basic function on states that is used in the semantics of assignment is modify, which is 
defined as follows:  

modify(s,x,a)  =  λv ∈ Variables.  if v=x then a else s(v) 

In words, modify(s,x,a) is the state (function from variables to values) that is just like 
state s, except that the value of x  is a.  

Denotational semantics 
The denotational semantics of while programs is given by defining a function C from 
parsed programs to commands. As with expressions, we write [[P]] for a parse tree of the 
program P. The semantics of programs are defined by the following clauses, one for each 
syntactic form of program.  

C[[x := e]](s)  = modify(s,x, E[[ e ]](s)) 

C[[P1;P2]](s)  =  C[[ P2 ]]( C[[P1 ]](s) ) 

C[[if e then P1 else P2]](s)  =  if  E[[ e ]](s)  then  C[[ P1 ]](s)  else C[[ P2 ]](s)  

C[[while e do P]](s) = if  not E[[ e ]](s)  then  s   

          else C[[ while e do P ]](C[[ P ]](s)) 

Since e is an expression, not a statement, we apply the semantic function E to obtain the 
value of e in a given state. 

In words, we can describe the semantics of programs as follows:  

C[[x := e]](s)  is the state similar to s, but with x having the value of e.  
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C[[P1;P2]](s)  is the state obtained by applying the semantics of P2 the to the state 
obtained by applying the semantics of P1 to state s.  

C[[if e then P1 else P2]](s)  is the state obtained by applying the semantics of P1 to 
s if e is true in s, and P2  to s otherwise.  

C[[while e do P]](s)  is a recursively defined function, f, from states to states. In 
words, f(s) is either s if e is false, or the state obtained by applying f to the state 
resulting from executing P once in s.  

The recursive function definition in the while clause is relatively subtle. It also raises 
some interesting mathematical problems, since it is not always mathematically reasonable 
to define functions by arbitrary recursive conditions. However, in the interest of keeping 
our discussion simple and straightforward, we will just assume that a definition of this 
form can be made mathematically rigorous. 

Example 1: We can calculate the semantics of various programs using this definition. To 
begin with, let us consider a simple loop-free program,  

if x>y then x :=y else y :=x 

which sets both x and y to the minimum of their initial values. For concreteness, let us 
calculate the semantics of this program in the state s0 where s0(x) = 1  and s0(y)=2. Since 
E[[x>y]](s0) = false, we have 

C[[if x>y then x :=y else y := x ]](s0)  

 =  if  E[[x>y]](s0)  then  C[[ x := y  ]](s0)  else C[[ y := x ]](s0) 

 =  C[[ y := x ]](s0) 

 =  modify(s0 , y, E[[ x ]](s0)) 

In words, if the program if x>y then x :=y else y := x is executed in the state s0, then the 
result will be the state that is the same as s0, but with variable y given the value that x has 
in state s0. 

Example 2: Although it takes a few more steps than the previous example, it is not too 
difficult to work out the semantics of the program 

x := 0;   y:=0;   while  x ≤ z  do  (y := y+x; x := x+1) 

in the state s0 where s0(z)=2. A few preliminary definitions will make the calculation 
easier. Let s1 and s2 be the states 

s1  =  C[[ x:= 0 ]](s0) 

s2  =  C[[ y := 0 ]](s1) 

Using the semantics of assignment, as above, we have 

s1  =  modify(s0 , x, 0) 

s2  =  modify(s1 , y, 0) 

Returning to the program above, we have 
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C[[x := 0;   y:=0;   while  x ≤ z  do  (y := y+x; x := x+1) ]](s0) 

=  C[[ y:=0;   while  x ≤ z  do  (y := y+x; x := x+1) ]]( C [[ x := 0 ]](s0) ) 

=  C[[ y:=0;   while  x ≤ z  do  (y := y+x; x := x+1) ]](s1 ) 

=  C[[ while  x ≤ z  do  (y := y+x; x := x+1) ]]( C [[ y := 0 ]](s1) ) 

=  C[[ while  x ≤ z  do  (y := y+x; x := x+1) ]](s2) 

=   if  not E[[x ≤ z ]](s2) then s2   

 else C[[ while  x ≤ z  do  (y := y+x; x := x+1) ]](C[[y := y+x; x := x+1 ]](s2)) 

=  C[[ while  x ≤ z  do  (y := y+x; x := x+1) ]](s3) 

where s3 has y set to 0 and x set to 1. Continuing in the same manner, we have 

C[[ while  x ≤ z  do  (y := y+x; x := x+1) ]](s3) 

= if  not E[[x ≤ z ]](s3) then s3   

 else C[[ while  x ≤ z  do  (y := y+x; x := x+1) ]](C[[y := y+x; x := x+1 ]](s3)) 

=  C[[ while  x ≤ z  do  (y := y+x; x := x+1) ]](s4) 

=  if  not E[[x ≤ z ]](s4) then s4   

 else C[[ while  x ≤ z  do  (y := y+x; x := x+1) ]](C[[y := y+x; x := x+1 ]](s4)) 

=  C[[ while  x ≤ z  do  (y := y+x; x := x+1) ]](s5) 

= s5 

where s4 has y set to 1 and x to 2, and s5  has y set to 3 and x to 3. The steps are 
tedious to write out, but you can probably see without doing so that if s0(z) = 5, for 
example, then this program will yield a state where the value of x is 0+1+2+3+4+5. 

As these examples illustrate, the denotational semantics of while programs 
unambiguously associates a partial function from states to states with each program. 
One important issue we have not discussed in detail is what happens when a loop 
does not terminate. The meaning C[[ while x=x do  x := x ]] of a loop that does not 
terminate in any state is a partial function that is not defined on any state. In other 
words, for any state s, C[[ while x=x do  x := x ]](s) is not defined. Similarly, C[[ 
while x=y do x := y ]](s)  is s  if s(x)≠s(y) and undefined otherwise. If you are 
interested in more information, there are many books that cover denotational 
semantics in detail, including Foundations for Programming Languages by J.C. 
Mitchell, Theories of Programming Language by J.C. Reynolds, and The Formal 
Semantics of Programming Languages: An Introduction by G. Winskel. 

4.3.4 Perspective and nonstandard semantics 
There are several ways of viewing the standard methods of denotational semantics. 
Typically, a denotational semantics is given by associating a function with each program. 
As many researchers in denotational semantics have observed, a mapping from programs 
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to functions must be written in some meta-language. Since lambda calculus is a useful 
notation for functions, it is common to use some form of lambda calculus as a meta-
language. Thus, most denotational semantics actually have two parts: a translation of 
programs into a lambda calculus (with some extra operations corresponding to basic 
operations in programs) and a semantic interpretation of the lambda calculus expressions 
as mathematical objects. For this reason, denotational semantics actually provides a 
general technique for translating imperative programs into functional programs. 

While the original goal of denotational semantics was to define the meanings of programs 
in a mathematical way, the techniques of denotational semantics can also be used to 
define useful “nonstandard” semantics of programs.  

One useful kind of nonstandard semantics is called abstract interpretation. In abstract 
interpretation, programs are assigned meaning in some simplified domain. For example, 
instead of interpreting integer expressions as integers, integer expressions could be 
interpreted elements of the finite set {0, 1, 2, 3, 4, 5, …, 100, >100}, where “>100” is a 
value used for expressions whose value might be greater than 100. This might be useful if 
we want to see if two array expressions A[e1] and A[e2] refer to the same array location. 
More specifically, if we assign values to e1 from the set above, and similarly for e2, we 
might be able to determine that e1=e2. If both are assigned the value “>100”, then we 
would not know that they are the same, but if they are assigned the same ordinary integer 
between 0 and 100, then we would know that these expressions have the same value. The 
importance of using a finite set of values is that an algorithm could iterate over all 
possible states. This is important for calculating properties of programs that hold in all 
states, and also for calculating the semantics of loops. 

Example: Suppose we want to build a program-analysis tool that checks programs to 
make sure that every variable is initialized before it is used. The basis for this kind of 
program analysis can be described using denotational semantics, where the meaning of an 
expression is an element of a finite set. 

Since the halting problem is unsolvable, program analysis algorithms are usually 
designed to be conservative. “Conservative” means that ther are no false positivies: an 
algorithm will only output correct if the program is correct, but may sometimes output 
error even if there is no error in the program. We cannot expect a computable analysis to 
decide correctly whether a program will ever access a variable before it is initialized. For 
example, we cannot decide whether 

(complictated error-free program);  x := y 

executes the assignment x := y without deciding whether “complictated error-free 
program” halts. However, it is often possible to develop efficient algorithms for 
conservative analysis. If you think about it, you will realize that most compiler warnings 
are conservative: some warnings could be a problem in general, but are not a problem in 
a specific program because of program properties that the compiler is not “smart” enough 
to understand. 

We describe initialize-before-use analysis using an abstract representation of machine 
states that only keep track of whether a variable has been initialized or not. More 
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precisely, a state will either be a special error state called error, or a function from 
variable names to the set {init, uninit} with two values, one representing any value of 
initialized variable and the other an uninitialized one. The set State of mathematical 
abstractions of machine states is therefore  

State  =  {error}  ∪  (Variables  →  {init, uninit}) 

As usual, the meaning of a program will be a function from states to states. Let us assume 
that E[[e]](s) =  error if e contains any variable y with s(y) = uninit, and E[[e]](s) = Ok 
otherwise. 

The semantics of programs is given by a set of clauses, one for each program form, as 
usual. For any program P, we let C[[P]](error) = error. The semantic clause for 
assignment in state s ≠ error can be written  

C[[x :=e ]](s)  =  if E[[e]](s)=Ok  then modify(s, x ,init) else error  

In words, if we execute an assignment x:= e in a state s different from error, then the 
result is either a state that has x initialized, or error if there is some variable in e that 
was not initialized in s. For example, let 

s0  = λv ∈Variables. uninit  

be the state with every variable uninitialized. Then 

C[[ x := 0 ]](s0)  =  modify(s0,x, init)  

is the state with variable x initialized and all other variables uninitialized  

The clauses for sequences, P1; P2, is essentially straightforward. For s ≠ error,  

C[[P1;P2]](s)  =  if  C[[P1 ]](s) = error  then  error  else C[[ P2 ]]( C[[P1 ]](s) ) 

The clause for conditional is more complicated since our analysis tool is not going to try 
to evaluate a boolean expression. Instead, we will treat conditional as if it is possible to 
execute either branch. (This is the conservative part of the analysis.) Therefore, we only 
change a variable to initialized if it is initialized in both branches. If  s1 and  s2 are states 
different from error  then let s1  s2 be the state 

s1  s2   =  λv ∈Variables. If  s1(v) = s2  (v) = init   then  init  else  uninit 

We define the meaning of a conditional statement by  

C[[if e then P1 else P2]](s)  

 =  if  E[[ e ]](s)= error or  C[[ P1 ]](s)= error  or C[[ P2 ]](s) = error   

  then   error    

  else  C[[ P1 ]](s)  C[[ P2 ]](s)   

For example, using s0 as above, we have 

C[[ if  0=1  then  x := 0  else x := 1; y := 2 ]](s0)  =   modify(s0, x, init) 

since only x is initialized in both branches of the conditional.  
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For simplicity, we will not consider the clause for while e do P. 

4.4 Functional and Imperative Languages  

4.4.1 Imperative and declarative sentences 
The languages that humans speak and write are called natural languages since they 
developed naturally, without concern for machine readability. In natural languages, there 
are four main kinds of sentences: imperative, declarative, interrogative, and exclamatory.  

In an imperative sentence, the subject of the sentence is implicit. For example, the subject 
of the sentence, 

Pick up that fish 

is (implicitly) the person to whom the command is addressed. A declarative sentence, 
expresses a fact, and may consist of a subject and a verb; or subject, verb, and object. For 
example, 

Claude likes bananas 

is a declarative sentence. Interrogatives are questions.  An exclamatory sentence may 
consist only of an interjection, such as Ugh! or Wow!  

In many programming languages, the basic constructs are imperative statements. For 
example, an assignment statement such as  

x:=5 

is a command to the computer (the implied subject of the utterance) to store the value 5 in 
a certain location. Programming languages also contain declarative constructs such as the 
function declaration 

function f(int x) { return x+1;} 

that states a fact. One reading of this as a declarative sentence is that the subject is the 
name f, and the sentence about f is, “f is a function whose return value is 1 greater than 
its argument.”  

In programming, the distinction between imperative and declarative constructs rests on 
the distinction between changing an existing value and declaring a new value. The first is 
imperative, the latter declarative. For example, consider the following program fragment: 

{ int x = 1;    /* declares new x */ 

 x = x+1;    /* assignment to existing x */ 

 { int y = x+1;  /* declares new y */ 

  { int x = y+1; /* declares new x */ 

 }}} 

Here, only the second line is an imperative statement. This is an imperative command 
that changes the state of the machine by storing the value 2 in the location associated with 
variable x. The other lines contain declarations of new variables.  
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A subtle point is that the last line in the code above declares a new variable with the same 
name as a previously declared variable. The simplest way to understand the distinction 
between declaring a new variable and changing the value of an old one is by variable 
renaming. As we saw in lambda calculus, a general principle of binding is that bound 
variables can be renamed without changing the meaning of an expression or program. In 
particular, we can rename bound variables in the program fragment above to get: 

{ int x = 1;    /* declares new x */ 

 x = x+1;    /* assignment to existing x */ 

 { int y = x+1;  /* declares new y */ 

  { int z = y+1; /* declares new z */ 

 }}} 

(If there were additional occurrences of x inside the inner block, we would rename them 
to z also.) After rewriting the program to this equivalent form, it is easy to see that the 
declaration of a new variable z does not change the value of any previously existing 
variable.  

4.4.2 Functional vs. imperative programs 
The phrase functional language is used to refer to programming languages in which most 
computation is done by evaluating expressions that contain functions. Two examples are 
Lisp and ML. Both of these languages contain declarative and imperative constructs. 
However, it is possible to write a substantial program in either language without using 
any imperative constructs.  

Some people use the phrase “functional language” to refer to languages that do not have 
expressions with side effects or any other form of imperative construct. However, we will 
use the more emphatic phrase pure functional language for declarative languages that are 
designed around flexible constructs for defining and using functions. We learned in 
Section 3.4.9 that Pure Lisp, based on atom, eq, car, cdr, cons, lambda, define is a pure 
functional language. If  rplaca, which changes the car of a cell, and rplacd, which changes 
the cdr of a cell, are added, then the resulting Lisp is not a pure functional language.  

Pure functional languages pass the following test:  

Declarative language test: Within the scope of specific declarations of x1, ..., xn, 
all occurrences of an expression e containing only variables x1, ..., xn have the 
same value.  

As a consequence, pure functional languages have a useful optimization property: If 
expression e occurs several places within a specific scope, this expression only needs to 
be evaluated once. For example, suppose a program written in Pure Lisp contains two 
occurrences of  (cons a b). An optimizing Lisp compiler could compute (cons a b) once and 
use the same value both places. This not only saves time, but also space, since evaluating 
cons would ordinarily involve a new cell.  
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Referential transparency  
In some of the academic literature on programming languages, including some textbooks 
on programming language semantics, the concept that is used to distinguish declarative 
from imperative languages is called referential transparency. While it is easy to define 
this phrase, it is a bit tricky to use it correctly to distinguish one programming language 
from another.  

In linguistics, a name or noun phrase is considered referentially transparent if it may be 
replaced by another noun phrase with the same referent (i.e., referring to the same thing) 
without changing the meaning of the sentence that contains it. For example, consider the 
sentence  

I saw Walter get into his car.  

If Walter owns a Maserati Biturbo, say, and no other car, then the sentence  

I saw Walter get into his Maserati Biturbo.  

has the same meaning because the noun phrases have the same meaning. A traditional 
counter-example to referential transparency, attributed to the philosopher of language 
Willard van Orman Quine, occurs in the sentence  

He was called William Rufus because of his red beard.  

The sentence refers to William IV of England and rufus means reddish or orange in color. 
If we replace William Rufus by William IV, we get a sentence that makes no sense:  

He was called William IV because of his red beard.  

Obviously, the king was called William IV because he was the fourth William, not 
because of the color of his beard.  

Returning to programming languages, it is traditional to say that a language is 
referentially transparent if we may replace one expression by another of equal value 
anywhere in a program, without changing the meaning of the program. This is a property 
of pure functional languages.  

The reason referential transparency is subtle is that it depends on the value we associate 
with expressions. In imperative programming languages, we can say that a variable x 
refers to its value or to its location. If we say that a variable refers to its location in 
memory, then imperative languages are referentially transparent, since replacing one 
variable by another that names the same memory location will not change the meaning of 
the program. On the other hand, if we say that a variable refers to the value stored in that 
location, then imperative languages are not referentially transparent, since the value of a 
variable may change as the result of assignment. 

Historical Debate 
John Backus received the 1977 ACM Turing Award for the development of Fortran. In 
his lecture associated with this award, Backus argues that pure functional programming 
languages are better than imperative ones. The lecture and the accompanying paper, 
published by the ACM, helped inspire a number of research projects aimed at developing 
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practical pure functional programming languages. The main premise of Backus’ 
argument is that pure functional programs are easier to reason about because we can 
understand expressions independent of the context in which they occur.  

Backus asserts that in the long run, program correctness, readability, and reliability are 
more important than other factors such as efficiency. This was a controversial position in 
1977, when programs were a lot smaller than they are today and computers were much 
slower. In the 1990s, computers finally reached the stage where commercial 
organizations began to choose software development methods that value programmer 
development time over run-time efficiency. Because of his belief in the importance of 
correctness, readability and reliability, Backus thought that pure functional languages 
would be appreciated as superior to languages with side effects.  

In order to advance his argument, Backus proposed a pure functional programming 
language called FP, an abbreviation of Functional Programming. FP contains a number 
of basic functions and a rich set of combining forms to build new functions from old 
ones. An example from Backus’ paper is a simple program to compute the inner product 
of two vectors. In C, the inner product of vectors stored in arrays a and b could be written 

int i, prod; 

prod=0; 

for (i=0; i < n; i++)  prod = prod + a[i] * b[i]; 

In contrast, the inner product function would be defined in FP by combining functions + 
and × (multiplication) with vector operations. Specifically, inner product can be 
expressed as 

Inner_product = (Insert  +) ° (ApplyToAll  ×) ° Transpose 

where ° is function composition and Insert, ApplyToAll and Transpose  are vector 
operations. Specifically, Transpose of a pair of lists produces a list of pairs and ApplyToAll, 
applies the given operation to every element in a list, like the maplist function in Section 
3.4.7. Given a binary operation and a list, Insert has the effect of inserting the operation 
between every pair of adjacent list elements and calculating the result. For example, 
(Insert +) <1, 2, 3, 4> = 1+2+3+4=10, where <1, 2, 3, 4> is the FP notation for the list with 
elements 1, 2, 3, 4.  

Although the C syntax may seem clearer to most readers, it is worth trying to imagine 
how these would compare if you had not seen either before. One facet of the FP 
expression is that all of its parts are functions that can be understood without thinking 
about how vectors are represented in memory. In contrast, the C program has extra 
variables i and prod that are not part of the function we are trying to compute. In this 
sense, the FP program is higher level, or more abstract, than the C code.  

A more general point about FP programs is that if one functional expression is equivalent 
to another, then we can replace one by the other in any program. This leads to a set of 
algebraic laws for FP programs. In addition to algebraic laws, an advantage of functional 
programming languages is the possibility of parallelism in implementations. This is 
discussed below. 
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In retrospect, Backus' argument seems more plausible than his solution. The importance 
of program correctness, readability, and reliability have increased in comparison with 
run-time efficiency. The reason is that these affect the amount of time that people must 
spend in developing, debugging, and maintaining code. When computers become faster, 
it is acceptable to run less efficient programs – hardware improvements can compensate 
for software. However, increases in computer speed do not make humans more efficient. 
In this regard, Backus was absolutely right about the aspects of programming languages 
that would be important in the future.   

Backus’ language FP, on the other hand, was not a success. In the years since his lecture, 
there was an effort to develop an FP implementation at IBM, but the language was not 
widely used. One problem is that the language has an difficult syntax. Perhaps more 
importantly, there are severe limitations in the kind of data structures and control 
structures that can be defined. Functional programming languages that allow variable 
names and binding (as in Lisp and lambda calculus) have been more successful, as have 
all programming languages that support modularity and reuse of library components. 
However, Backus raised an important issue that led to useful reflection and debate.  

Functional programming and concurrency 
An appealing aspect of pure functional languages, and of programs written in the pure 
functional subset of larger languages, is that programs can be executed concurrently. This 
is a consequence of the declarative language test mentioned above. We can see how 
parallelism arises in pure functional languages using the example of a function call 
f(e1,...,en), where function arguments e1,...,en are expressions that may need to be 
evaluated. 

Functional programming: we can evaluate f(e1,...,en) by evaluating e1,...,en in parallel, since 
values of these expressions are independent.  

Imperative programming: For an expression such as f(g(x), h(x)), the function g might 
change the value of x. Hence the arguments of functions in imperative languages must be 
evaluated in a fixed, sequential order. This ordering restricts the use of concurrency.  

Backus used the term von Neumann bottleneck for the fact that in executing an imperative 
program, computation must proceed one step at a time. Since each step in a program may 
depend on the previous one, we have to pass values one at a time from memory to the 
CPU and back. This sequential channel between the CPU and memory is what he called 
the von Neumann bottleneck.  

While functional programs provide the opportunity for parallelism, and parallelism is 
often an effective way of increasing the speed of computation, effectively taking 
advantage of inherent parallelism is difficult. One problem that is fairly easy to 
understand is that functional programs sometimes provide too much parallelism. If all 
possible computations are performed in parallel, many more computation steps will be 
executed than necessary. For example, full parallel evaluation of a conditional  

if  e1 then e2 else e3 
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will involve evaluating all three expressions. Eventually, when the value of e1 is found, 
one of the other computations will turn out to be irrelevant. In this case, the irrelevant 
computation can be terminated, but in the meantime, resources will have been devoted to 
calculation that does not matter in the end.  

In a large program, it is easy to generate so many parallel tasks that the time setting up 
and switching between parallel processes will detract from the efficiency of the 
computation. In general, parallel programming languages need to provide some way for a 
programmer to specify where parallelism may be beneficial. Parallel implementations of 
functional languages often have the drawback that the programmer has little control over 
the amount of parallelism used in execution. 

Practical functional programming 
Backus' Turing Award lecture raises a fundamental question:  

Do pure functional programming languages have significant practical advantages 
over imperative languages?  

While we have considered many of the potential advantages of pure functional 
programming languages in this section, we do not have a definitive answer. From one 
theoretical point of view, functional programming languages are as good as imperative 
programming languages. This can be demonstrated by giving a translation of C programs 
into either FP programs, lambda calculus expressions, or Pure Lisp. Denotational 
semantics provides one method for doing this. 

To answer the question in practice, however,  we would need to carry out large projects 
in a functional language and see whether it is possible to produce usable software in a 
reasonable amount of time. Some work towards answering this question was done at IBM 
on the FP project (which was cancelled soon after Backus retired). Additional efforts 
using other languages such as Haskell and Lazy ML are still being carried out at other 
research laboratories and universities. Although most programming is done in imperative 
languages, it is certainly possible that at some future time, pure or mostly-pure functional 
programming languages will become more popular. Whether or not that happens, 
functional programming projects have generated many interesting language design ideas 
and implementation techniques that have been influential beyond pure functional 
programming. 

4.5 Chapter Summary   
In this chapter, we studied 

• The outline of a simple compiler and parsing issues, 

• Lambda calculus, 

• Denotational semantics, 

• The difference between functional and imperative languages. 
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A standard compiler transforms an input program, written in a source language, into an 
output program, written in a target language. This process is organized into a series of six 
phases, each involving more complex properties of programs. The first three phases, 
lexical analysis, syntax analysis, and semantic analysis, organize the input symbols into 
meaningful tokens, construct a parse tree, and determine context-dependent properties of 
the program such as type agreement of operators and operands. (The name “semantic 
analysis” is commonly used in compiler books, but is somewhat misleading since it is 
still analysis of the parse tree for context-sensitive syntactic conditions.)  The last three 
phases, intermediate code generation, optimization, and target code generation,  are 
aimed at producing efficient target code through language transformations and 
optimizations. 

Lambda calculus provides a notation and symbolic evaluation mechanism that is useful 
for studying some properties of programming languages. In the section on lambda 
calculus, we discussed binding and α-conversion. Binding operators arise in many 
programming languages in the form of declarations and in parameter lists of functions, 
modules, and templates. Lambda expressions are symbolically evaluated using β-
reduction, with the function argument substituted in place of the formal parameter. This 
process resembles macro-expansion and function in-lining, two transformations that are 
commonly done by compilers. Although lambda calculus is a very simple system, it is 
theoretically possible to write every computable function in the lambda calculus. Untyped 
lambda calculus, which we discussed, can be extended with type systems to produce 
various forms of typed lambda calculus. 

Denotational semantics is a way of defining the meanings of programs by specifying the 
mathematical value, function, or function on functions that each construct denotes. 
Denotational semantics is an abstract way of analyzing programs since it does not 
consider issues such as running time and memory requirements. However, denotational 
semantics is useful for reasoning about correctness and has been used to develop and 
study program-analysis methods that are used in compilers and programming 
environments. Some of the exercises at the end of the chapter present applications for 
type checking, initialization-before-use analysis, and simplified security analysis. From a 
theoretical point of view, denotational semantics shows that every imperative program 
can be transformed into an equivalent functional program. 

In pure functional programs, syntactically identical expressions within the same scope 
have identical values. This property allows certain optimizations and makes it possible to 
execute independent subprograms in parallel. Since functional languages are theoretically 
as powerful as imperative languages, we discussed some of the pragmatic differences 
between functional and imperative languages. Although functional languages may be 
simpler to reason about in certain ways, imperative languages often make it easier to 
write efficient programs. Although Backus argues that functional programs can eliminate 
the von Neumann bottleneck, practical parallel execution of functional programs has not 
proven as successful as he anticipated in his Turing Award lecture.  



 84

4.6 Exercises 
(*  Insert exercises from LaTeX files  *) 
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Robin Milner 

A thoughtful, engaging, and optimistic person, Robin Milner has had a 
profound effect on several areas of computer science and on computing 
in the U.K in general. Always looking for new insight and open to new 
ideas, Robin is an unassuming but forceful presence at any discussion 
over coffee after a conference talk or workshop presentation. 

Milner was awarded the 1991 ACM Turing Award for “several distinct 
and complete achievements: LCF, probably the first theoretically based 
yet practical tool for machine-assisted proof construction; ML, the first 
language to include polymorphic type inference and a type-safe 
exception-handling mechanism;  CCS, a general theory of concurrency;  
and full abstraction, the study of the relationship between operational and 
denotational semantics." 

After approximately 20 years in Edinburgh, Robin returned to 
Cambridge University, where he held a Chair in Computer Science and 
was Head of the Computer Laboratory until his retirement in 1999. 
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Chapter 5. The Algol Family and ML  
 

The Algol-like programming languages evolved in parallel with the Lisp family of 
languages, beginning with Algol 58 and Algol 60 in the late 1950s. The most prominent 
Algol-like programming languages are Pascal and C, although C differs from most of the 
Algol-like languages in some significant ways.  

In this chapter, we look at some of the historically important languages from the Algol 
family, including Algol 60, Pascal, and C. Since many of the central features of the Algol 
family are used in ML, we then use the ML programming language to discuss some 
important concepts in more detail. The ML section of this chapter is also a useful 
reference for later chapters that use ML examples to illustrate concepts that are not found 
in C.  

There are many Algol-related languages that we will not have time to cover, such as 
Algol 58, Algol W, Euclid, EL1, Mesa, Modula-2, Oberon, and Modula-3. We will 
discuss Modula and modules in Chapter 9. 

5.1 The Algol family of programming languages 
A number of important language ideas were developed in the Algol family, which began 
with work on Algol 58 and Algol 60 in the late 1950s. The Algol family developed in 
parallel with Lisp languages and led to the late development of ML and Modula. 

The main characteristics of the Algol family are the familiar colon-separated sequence of 
statements used in most languages today, block structure, functions and procedures, and 
static typing.  

Algol 60 

Algol 68 

Pascal 

ML Modula 

Lisp 
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5.1.1 Algol 60 
Algol 60 was designed between 1958 and 1963, by a committee that included many 
important computer pioneers, such as John Backus (designer of Fortran), John McCarthy 
(designer of Lisp), and Alan Perlis. Algol 60 was intended to be a general-purpose 
language, which at the time meant there was emphasis on scientific and numerical 
applications. In comparison with Fortran, Algol 60 provided better ways to represent data 
structures and, like LISP, allowed functions to be called recursively. Until the 
development of Pascal, Algol 60 was the academic standard for describing complex 
algorithms in scientific and engineering publications.  

Some important features of Algol 60 are: 

• Simple statement-oriented syntax, involving colon-separated sequences of statements 
• Blocks, indicated by begin … end (corresponding to curly braces { … } in C) 
• Recursive functions and stack storage allocation 
• Fewer ad hoc restrictions than previous languages. For example, 

− General expressions inside array indices 
− Procedures could be called with procedure parameters 

• A primitive static type system that was later improved upon on Algol 68 and Pascal. 
 
Here is an example program (explained below) that will give you some feel for Algol 60 
syntax: 

real procedure average(A,n); 

 real array A; integer n; 

 begin 

  real sum; sum := 0; 

  for i = 1 step 1 until n do 

   sum := sum + A[i]; 

  average := sum/n 

 end; 

In Algol, the two-character sequence := is used for assignment, and the single character = 
for test for equality. In this program, notice that the types of the parameters to the 
procedure (function) are declared in the line following the procedure name. While A is 
declared to be a real array, no array bounds are given as part of the declaration. The 
return value of the procedure is given by assigning a value to the name of the procedure. 
(This is the assignment to average in the last line.) An irritating syntactic peculiarity of 
Algol 60 is the way that semicolons must be (and must not be) used between statements. 
In particular, it would be a syntactic error to place a semicolon after the last assignment 
and before the keyword end. There is a systematic explanation for why semicolons are 
needed some places and not others in Algol60, but the systematic reason is hard for 
programmers to learn, remember and apply when programs are edited. 
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There were a number of trouble spots in Algol 60 that motivated computer scientists to 
develop better programming languages. For example, 

• The Algol 60 type discipline had some shortcomings. Two examples illustrated in 
more detail in the exercises are: 
− The type of a procedure parameter to a procedure does not include the types of 

parameters, 
− An array parameter to a procedure is given type array, without array bounds. 

• Algol 60 was designed around two parameter-passing mechanisms, pass-by-value 
and pass-by-name. 
− Pass-by-name interacts badly with side effects 
− Pass-by-value is expensive for arrays 

• There are some awkward issues related to control flow, such as memory management 
when a program jumps out of a nested block. 

Pass-by-name. Perhaps the strangest feature of Algol 60, in retrospect, is the use of 
pass-by-name. In pass-by-name, the result of a procedure call is the same as if the formal 
parameter were substituted into the body of the procedure. This rule for defining the 
result of a procedure call by copying the procedure and substituting for the formal 
parameters is called the Algol 60 copy rule. While the copy rule works well for pure 
functional programs, as illustrated by β-reduction in lambda calculus, the interaction with 
side effects to the formal parameter are a bit strange. Here is an example program 
showing a technique referred to as “Jensen’s device”: passing an expression and a 
variable it contains to a procedure so that the procedure can use one parameter to change 
the location referred to by the other: 

begin integer i; 

 integer procedure sum(i, j); 

  integer i, j; 

   comment parameters passed by name; 

  begin integer sm; sm := 0; 

   for i := 1 step 1 until 100 do  sm := sm + j; 

   sum := sm 

  end; 

 print( sum(i, i*10 )) 

end 

In this program, the procedure sum(i,j) adds up the values of j as i goes from 1 to 100. If 
you look at the code, you will realize that the procedure makes no sense unless changes 
to i cause some change in the value of j; otherwise, the procedure just computes 100*j. In 
the call sum(i, i*10)) shown here, the for loop in the body of procedure sum adds up the 
value of i*10 as i goes from 1 to 100. 
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BNF. An important byproduct of the Algol 60 design effort was the invention of Backus-
Normal Form (or BNF), which was used in the Algol 60 report to define the well-formed 
programs of the language. BNF, summarized in Section 4.1.2, remains the standard 
notation for describing the syntax of programming languages. Although Algol 60 was 
very influential and commonly used in academic circles and in Europe, it was not a 
commercial success in the United States. 

5.1.2 Algol 68 
Algol 68 was intended to remove some of the difficulties found in Algol 60 and improve 
the expressiveness of the language. However, in the end, the Algol 68 committee 
produced a design that was more problematic than Algol 60. One main problem is that 
while programming in Algol 68 appears no more difficult than Algol 60, some features of 
Algol 68 made it difficult to compile efficiently. One source of difficulty was the 
combination of procedure parameters and procedure return values, which was not well 
understood at the time. (We will discuss the implementation consequences of higher-
order functions in Section 7.4.) Another reason that Algol 68 was not entirely successful 
was that the authors chose to define entirely new terminology for the language and its 
documentation. This made it difficult for programmers to move from Algol 60 to Algol 
68.  

One contribution of Algol 68 was its regular, systematic type system. For some reason, 
the Algol 68 designers chose to call types “modes”. The modes of Algol 68 are either 
primitive or compound modes. The primitive modes included  

int, real, char, bool, string, complex, bits, bytes, semaphore, format  (for input and 
output), and file. 

The compound modes include modes formed using the forms: 

array, structure, procedure, set, and pointer. 

These type constructions can be combined without restriction, so that a programmer can 
build an array of pointers to procedures, for example. The decision to allow unrestricted 
combinations of the mode constructors made the type system seem more systematic than 
previous languages.  

Some other advances in Algol 68 were in the areas of memory management and 
parameter passing. (We will cover the general concepts of memory management, 
parameter passing, and related issues in Chapter 7.) Algol 68 memory management 
involves a stack for local variables and heap storage for data that is intended to live 
beyond the current function call. Like C, Algol 68 data on the heap is explicitly allocated, 
but unlike C heap data is reclaimed by garbage collection. This combination of explicit 
allocation and garbage collection carried over into Pascal. Algol 68 parameter passing is 
pass-by-value, with pass-by-reference accomplished by pointer types. This is essentially 
the same design as adopted in C some years later. The decision to allow independent 
constructs to be combined without restriction also led to some complex features, such as 
assignable procedure variables. 
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5.1.3 Pascal 
Pascal was design in the 1970s by Niklaus Wirth, using data structuring ideas advanced 
by C.A.R. (Tony) Hoare. Wirth first designed and implemented a language called Algol 
W and then refined the design of Algol W to produce Pascal. Wirth designed Pascal 
around a series of teaching exercises, enumerated in his book, Algorithms + Data 
Structures = Programs. He also designed the language so that it could have a simple one-
pass compiler. 

Pascal was significantly simpler than Algol 68 and achieved more widespread acceptance 
than either Algol 60 or Algol 68. Although the use of Pascal declined in the 1990s, Pascal 
was one of the most widely used programming languages over approximately a twenty 
year period. Pascal was very successful as a programming language for teaching, in part 
because it was designed explicitly for this purpose. Pascal was also used for a significant 
number of production programming projects, including operating systems and 
applications for the Apple Macintosh. 

The Pascal type system is more expressive than the Algol 60 type system. The type 
system also repairs some of the Algol 60 type loopholes, such as Algol 60 procedure 
types that do not include the types of parameters. The Pascal type system is also simpler 
and more limited than the Algol 68 type system, eliminating some of the compilation 
difficulties of Algol 68.  

An important contribution of the Pascal type system is the rich set of data structuring 
concepts. These include records (similar to C structs), variant records (a form of union 
type), and subranges. For example, the subrange [1 .. 10] of integers between 1 and 10 
became a type for the first time in Pascal. A restriction that made Pascal simpler than 
Algol 68 was that procedure parameters could not be procedures with procedure 
parameters. More specifically, in Pascal syntax, procedures of the form  

procedure DoSomething( j, k : integer ); 

procedure DoSomething( procedure P(i:integer); j,k, : integer); 

are allowed. The first is a procedure with integer parameters, and the second is a 
procedure whose parameter is a procedure with integer parameters. However, a procedure 
of the form 

procedure NotAllowed( procedure MyProc( procedure P(i:integer))); 

with a procedure parameter that has a procedure parameter, is not allowed.  

One place where Wirth’s focus on teaching and on systematic language design caused a 
small problem was in the typing of array parameters. In Pascal, the type of an array has 
the form  

array 〈indexType〉 of 〈entryType〉 

where 〈indexType〉 is often a subrange type. The important detail here is that the index 
type is part of the type of an array, and two array types are equal only if they have the 
same index type and entry type. This definition of array type allows a procedure 
declaration such as  
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procedure p(a : array [1..10] of integer) 

where the argument to the procedure is an array of some array type, but does not allow  

procedure p(n: integer, a : array [1..n] of integer)since array [1..n] of integer is not 
considered a legal type in Pascal. A procedure of the form  

procedure p(a : array [1..10] of integer) 

may only be called with an array of length 10 as an actual parameter. This is an 
unfortunate limitation. If we want to write a sort procedure, for example, then we will 
have to write the procedure out for sorting arrays of some fixed length. If we want to sort 
arrays of several different lengths, then Pascal (as originally designed) would make it 
necessary to copy over the procedure several times, changing the array length in each 
copy.  

Not only is this awkward, it is also unnecessary because the memory associated with an 
array is already allocated before it is passed to any procedure. Therefore, there is no 
reason, other than type checking, for a procedure to only allow array parameters of a 
fixed length. Since this aspect of the Pascal design was awkward and unnecessary, later 
versions of Pascal have this limitation removed. 

5.1.4 Modula 
The Modula programming language is a descendent of Pascal, developed by Pascal 
designer Niklaus Wirth in Switzerland in the late 70s. The main innovation of Modula 
over Pascal is a module system, used for grouping sets of related declarations into 
program units. Some examples of Modula-2, a successful version of the language, appear 
in Section 9.3.1, as part of the discussion of program modules. 

5.2 The development of C 
While Pascal was a successful academic and teaching language, C eventually eclipsed 
Pascal as a production programming language. There are several reasons for the success 
of C. One reason that is unrelated to the design of the language itself is the popularity of 
the Unix operating system, which was written in C. When writing programs to run under 
Unix, all of the basic system calls are immediately available in C. Therefore, it is easier 
to write many Unix applications in C than in other programming languages. Another 
reason for the popularity of C is that it has a distinctive memory model that is close to the 
underlying hardware. Although C has many of the same concepts as Pascal, C is less 
rigid in its enforcement of basic principles and restrictions. Many C programmers like the 
resulting flexibility of C.  

C was originally designed and implemented from 1969 to1973, as part of the Unix 
operating system project at Bell Laboratories. C was designed by Dennis Ritchie, one of 
the original designers of Unix, so that he and Ken Thompson could build Unix in a 
language that they liked. The design evolved from Ritchie and Thompson’s B language 
(hence the name C, the next letter in the alphabet), which was in turn based on a language 
called BCPL. Significant changes in C occurred in 1977-1979, as part of a push to 
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achieve portability of the Unix system, and in the mid-1980s when an ANSI committee 
standardized the language. BCPL was a systems programming language designed in the 
1960s and used by Bell Laboratories members of the Multics operating system project. B 
was a pared-down version of BCPL, designed to run on the small PDP computer used by 
the Unix project. The main difference between B and C is that B was untyped while the C 
language has types and type-checking rules. 

One characteristic that distinguishes C from other popular languages is the treatment of 
memory locations, arrays, and pointers. This part of C is inherited from BCPL and B. The 
only data type in B is the “word,” or “cell,” a fixed-length bit pattern. Memory in BCPL 
and B is presented to the programmer as a linear array of words. Pointers are treated as 
integer indices into this array and programmer-declared arrays are treated as contiguous 
words drawn from the larger array of all memory words. This view has several 
consequences. One is that arrays and pointers are largely equivalent, as described below 
for C. Another consequence is that since pointers are integer indices in the memory array, 
pointer arithmetic is considered meaningful: if p is the address of a memory location, then 
p+1 is the address of the next location.  

C arrays and pointers 
In C, pointers and arrays are declared differently, as if pointers and arrays are different 
types of values. For example, the following code declares a pointer p to an integer 
location and an array A of integers: 

int * p; 

int A[5]; 

In most languages, there is some operation for dereferencing a pointer. Dereferencing is 
the operation that returns the location pointed to by the pointer. In most languages with 
arrays, there is an indexing operation that can be used to find one of the locations within 
the array. There are some similarities between these two operations, but most typed 
languages (including others in the Algol family) would consider dereferencing an array 
name or indexing a pointer illegal. In C, however, arrays are effectively treated as 
pointers. To quote Dennis Ritchie’s 1975 C Reference Manual, 

Every time an identifier of array type appears in an expression, it is converted 
into a pointer to the first member of the array. … By definition, the subscript 
operator [ ] is interpreted in such a way that “E1[E2]”is identical to 
“*((E1)+(E2)).” Because of the conversion rules which apply to +, if E1 is an 
array and E2 is an integer, then E1[E2] refers to the E2-th member of E1.  

There is no other programming language in widespread use that allows pointer 
arithmetic in this way.  

Critique  
An important feature of C has been the tolerance of C compilers to type errors. This is 
partly because C evolved from typeless languages. Ritchie had to adapt existing programs 
as the language developed, and make allowance for existing code in a typeless language. 
As C evolved further, and was later standardized by an ANSI committee, backward 
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compatibility with then-existing C code also prevented strong typing restrictions. 
Although some C programmers have liked the ability to write and compile programs with 
type errors, most C programmers have eventually come to consider the weak type 
checking of many C compilers to be a disadvantage. In fact, one of the most commonly 
cited advantages of C++ over C is the fact that C++ provides better type checking.  

As Dennis Ritchie says in The Development of the C Language (ACM Second History of 
Programming Languages conference, 1993), “C is quirky, flawed, and an enormous 
success.” While accidents of history surely helped, C evidently satisfied a need for a 
system implementation language efficient enough to displace assembly language, yet 
sufficiently abstract and fluent to describe algorithms and interactions in a wide variety of 
environments. 

An interesting discussion may be found in Kernighan’s “Why Pascal is not my favorite 
programming language”, Bell Labs CSTR 100, July 1981. If you are interested in doing 
extra reading, you can find this document on the web. 

5.3 The LCF system and ML 
ML might be called a mostly-functional language with imperative features, or perhaps a 
“function-oriented imperative language”. ML has very flexible function features, similar 
to Lisp, allowing functions to be created in-line as parts of expressions, passed as 
arguments to functions, and returned as function results. At the same time, it is possible 
to write imperative Algol-like programs in a syntax that resembles the Algol family, with 
approximately the same degree of ease as modern descendants of Algol. ML also has 
concurrent extensions, making it suitable for developing concurrent systems, and an 
object-oriented extension. However, our main use of ML in this part of the book will be 
to examine concepts common to Algol-like languages, Lisp-like languages, and 
concurrent and object-oriented extensions of these languages. Therefore, we will focus 
primarily on the core fragment of ML. 

The main reasons for looking at ML in some detail are: 

• ML illustrates most of the important concepts of the Lisp/Algol families of 
languages. 

• Type systems have been an important part of programming language design from 
1960 to the present day, and the ML type system is often considered the cleanest and 
most expressive type system to date. 

• Since most readers are familiar with C, and many have not written many programs in 
significantly different languages, it is useful to have a language other than C to use 
for examples in the following chapters. 

• ML allows higher-order functions and other constructions that are discussed in the 
following chapters. 

One distinguishing feature of ML is its type system, which extends the successful Pascal 
type system in a number of ways. Unlike C, which has numerous loopholes, the ML type 
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system is sound in a precise mathematical sense. Specifically, if the type checker 
determines that an expression has a certain type, then any terminating evaluation of that 
expression is guaranteed to produce a legitimate value of that type. For example, if an 
expression has a type like “pointer to string”, then the value of that expression is 
guaranteed to be a pointer to allocated memory that contains a string. It cannot be a 
dangling pointer to a location that has been deallocated or used to store some value other 
than a string. 

Before ML, programming languages with sound type systems were generally considered 
unpleasantly restrictive. Many C programmers have considered it important to “break” 
the type system in various ways (confusing integers and pointers, for example), and Lisp 
fans have valued their freedom from static typing. However, the ML type system is 
unobtrusive, since many type declarations are automatically deduced by the compiler, 
and flexible, since the type system allows an expression to have many possible types. We 
will explore these aspects of the ML type system in more detail in Chapter 6.  

5.3.1 History and Intended Applications of ML 
Most successful programming languages were originally designed for a single application 
or a set of closely related programming tasks. The ML programming language was 
designed by Robin Milner and his associates as part of the LCF project. The LCF project, 
aimed at developing a Logic for Computable Functions, drew inspiration from a set of 
logical principles outlined by Dana Scott. Robin Milner’s goal was to build a system that 
would make it practical to prove interesting properties of functional programs in an 
automated or semi-automated manner. His LCF project started at Stanford in 1970 and 
continued at Edinburgh through the 1980s, making substantial progress towards this goal 
and stimulating a number of related efforts in the process. 

ML was designed as the Meta-Language (hence its name) of the LCF System. Its original 
purpose was for writing programs that would attempt to construct mathematical proofs. 
As any reader who has developed mathematical proofs will know, this can be a very 
difficult task. In many cases, it is necessary to try a number of methods for finding 
proofs. A fundamental concept in the LCF system is that of proof tactic. A proof tactic is 
a function that, given a formula making some assertion, tries to find a proof of the 
formula. Since a tactic may search indefinitely, or reach some situation where it is clear 
that no further search is likely to produce a proof, there are three possible results of 
applying a tactic to a formula:  

       succeed and return proof 

  tactic(formula)       =      search forever 

       fail 

The concept of tactic may be used to understand some basic properties of the ML 
programming language. Since the goal of LCF is to find correct proofs, a programming 
language mechanism that ensures correctness, in whole or in part, might improve the 
LCF system. An idea that was adopted in LCF was to try to use a type system to 
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distinguish successful proofs from unsuccessful ones. In particular, there was a type 
proof, with the intent that values of type proof are correct proofs, not incorrect ones.  

Once we have a type of correct proofs, a problem arises. If a tactic fails to find a proof, 
what should the function do? More specifically, since a tactic is a function from formulas 
to proofs, the type of a tactic would be a function type, 

tactic : formula  →  proof  

However, this type seems to say that if a tactic is applied to a function, the result will be a 
proof. But what if the formula is not a correct statement and therefore has no proof? The 
solution was to develop an exception mechanism and allow a tactic to raise an exception 
if the computation determines that no proof will be found. From this inspiration, Milner 
developed the first type-safe exception mechanism, one of the accomplishments that led 
to his Turing Award in 1991. Allowing for the possibility of exceptions, a function f 
maps A to B, written 

f : A → B  

in ML, means  

For all x in A,  

if f(x) terminates normally without raising an exception,  then f(x) is in B. 

Thus type correctness and exceptions, two basic concepts in ML, arose naturally as the 
result of the intended application of ML.  

Another emphasis of ML is the use of higher-order functions. This can also be attributed 
to the interest in defining complex proof-search tactics:  Since a tactic is a function, a 
method for combining tactics into a proof-search strategy is a function from functions to 
functions. For example, here is the outline of a function that combines two tactics 
according to an if-then-else strategy: 

f(tactic1, tactic2) =  

                 λformula.  try tactic1(formula)  

                                        else tactic2 (formula)  

tactic1tactic2, the function f returns a tactic that, given a formula, first tries to prove the 
formula using tactic1 and then uses tactic2 if tactic1 fails. 

5.4 The ML programming language 
Since we will use ML in the next few chapters of the book to illustrate properties of 
programming languages, we will study ML in a little more detail than some other 
languages. The version of ML that we will use is called Standard ML 97. Compilers for 
SML97 are available on the Internet without charge. Several books and manuals covering 
the language are available. In addition to online sources easily located by web search, 
Ullman’s Elements of ML Programming (Prentice Hall, 1994) is a good reference. 
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5.4.1 Interactive Sessions and the Run-time System  
Most ML compilers are based on the same kind of read-eval-print loop as many Lisp 
implementations. The standard way of interacting with the ML system is to enter 
expressions and declarations one at a time. As each is entered, the source code is type-
checked, compiled, and executed. Once an identifier has been given a value by a 
declaration, that identifier can be used in subsequent expressions. 

Expressions 
For expressions, user interaction with the ML compiler has the form 

—  <expression>;  

val it = <print_value> : <type>  

where “—”is the prompt for user input and the line below is output from the ML 
compiler and run-time system. The lines above show that if you type in an expression, the 
compiler will compile the expression and evaluate it. The output is a bit cryptic: “it” is a 
special identifier bound to the value of the last expression entered, so “it = <print_value> : 
<type>” means that the value of the expression is <print_value> and this is a value of type 
<type>. It is probably easier to understand the idea from a few examples. Here are four 
lines of input and the resulting compiler output:  

— (5+3) -2;  

val it = 6 : int  

— it + 3;  

val it = 9 : int  

— if true then 1 else 5;  

val it = 1 : int 

— (5 = 4);  

val it = false : bool  

In words, the value of the first expression is the integer 6. The second expression adds 3 
to the value it of the previous expression, giving integer value 9. The third expression is 
an if-then-else, which evaluates to the integer 1, and the fourth expression is a Boolean-
valued expression (comparison for equality) with value false.  

Each expression is parsed, type-checked, compiled and executed before the next input is 
read. If an expression does not parse correctly or does not pass the type checking phase of 
the compiler, no code is generated and no code is executed. The ill-typed expression  

if true then 3 else false; 

for example, parses correctly since this has the correct form for an if-then-else. However, 
the type checker rejects this expression since the ML type checker requires the “then” and 
“else” parts of an if-then-else expression to have the same types, as described below. The 
compiler output for this expression includes the error message 

stdIn:1.1-29.10 Error: types of rules don't agree [literal] 



 97

indicating a type mismatch. A full discussion of ML type checking appears in Chapter 6. 

Declarations  
User input can be an expression or a declaration. The standard form for ML declarations, 
followed by compiler output, is:  

—  val <identifier> = <expression>;  

val <identifier> = <print_value> : <type>  

The keyword val stands for “value.” When a declaration is given to the compiler, the 
value associated with the identifier is computed and bound to that identifier. Since the 
value of the expression used in a declaration has a name, the compiler output uses this 
name instead of “it” for the value of the expression. Here are some examples:  

—  val x=7+2; 

val x = 9 : int 

—  val y = x+3; 

val y = 12 : int 

— val z = x*y - (x div y); 

val z = 108 : int 

In words, the first declaration binds the integer value 9 to the identifier x. The second 
declaration refers to the value of x from the first declaration and binds the value 12 to the 
identifier y. The third declaration refers to both of the previous declarations and binds the 
integer value 108 to the identifier z.  

You might notice that integer division in ML is written “div” instead of “/”. There are a 
few syntactic peculiarities of ML like this, especially when it comes to integer and real 
number arithmetic. As you will see from the discussion of ML type inference in Chapter 
6, it is useful for the compiler to distinguish operations of different types. In ML, / is used 
for real number (floating point) division, and there is no automatic conversion from 
integer to real. Therefore, x/y would not have been syntactically well-formed if we had 
written this instead of x div y in the declaration of z. 

Functions can be declared using the keyword fun (which stands for “function”) instead of 
val. The general form of user input and compiler output is 

—  fun <identifier> <arguments> = <expression>;  

val <identifier> = fn  <arg_type> → <result_type>  

This declares a function whose name is <identifier>. The argument type is determined by 
the form of <arguments> and the result type is determined by the form of <expression>.  

Here is an example: 

— fun f(x) = x + 5;  

val f = fn : int → int  
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This declaration binds a function value to the identifier f. The value of f is a function from 
integers to integers. The same function can be declared using a val declaration, by writing 

— val f = fn x => x+5; 

val f = fn : int → int  

In this declaration, the identifier f is given the value of expression fn x => x+5, which is a 
function expression like (lambda (x) (+ x 5)) in Lisp or λx. x+5 in lambda calculus. We will 
discuss function declarations and function expressions further in Section 5.4.3. 

The system prints fn for the value of f because the value of a function is not printable. 
One reason why function values are not printed is that most functions are infinite values 
in principle – an integer function has infinitely many possible results, one for each 
possible integer argument. After a function is declared, the compiler stores compiled code 
for the function. It would be possible to print the compiled code, but this is not in ML. It 
is in some other target low-level language, and printing it would not usually be useful to a 
programmer. 

Identifiers vs variables: An important aspect of ML is that the value of an identifier 
cannot be changed by assignment. More specifically, if an identifier x is declared by val x 
= 3, for example, then the value of x will always be 3. It is not possible to change the 
value of x by assignment. In other words, ML declarations introduce constants, not 
variables. The way to declare an assignable variable in ML is to define a reference cell, 
which is similar to a cons cell in Lisp, except that reference cells do not come in pairs. 
References and assignment are explained in Section 5.4.5.  

Although most readers will initially think otherwise, the ML treatment of identifiers and 
variables is more uniform than the treatment of identifiers and variables in languages 
such as Pascal and C. If an integer identifier is declared in C or Pascal, it is treated as an 
assignable variable. On the other hand, if a function is declared and given a name in 
either of these languages, the name of the function is a constant, not a variable. It is not 
possible to assign to the function name and change it to a different function. Thus Pascal 
and C choose between variables and constants according to the type of the value given to 
the identifier. In ML, a val declaration works the same way for all types of values.  

5.4.2 Basic types and type constructors 
The core expression, declaration, and statement part of ML is best summarized by listing 
the basic types along with the expression forms associated with each type.  

Unit  
The type unit has only one element, written as empty parentheses: 

( ) : unit  

Like void in C, unit is used as the result type for functions that are executed only for side-
effects. Unit is also used as the type of argument for functions that have no arguments. C 
programmers may be confused by the fact that “unit” suggests one element, while “void” 
seems to mean no elements. From a mathematical point of view, “one element” is correct. 
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In particular, if a function is supposed to return an element of an empty type, then that 
function cannot return since the empty set (or empty type) has no elements. On the other 
hand, a function that returns an element of a one-element type can return. However, we 
do not need to keep track of what value such a function returns, since there is only one 
thing that it could possibly return. The ML type system is based on years of theoretical 
study of types; most of the typing concepts in ML have been considered with great care. 

Bool  
There are two values of type bool, true and false. 

true : bool  

false : bool 

The most common expression form associated with Booleans is conditional, with  

if e1 then e2 else e3 

having the same type as e2 and e3 if these have the same type and e1 has type bool. There 
is no if-then without else, since a conditional expression must have a value whether the 
test is true or false. For example, an expression 

— val nonsense = if a then 3; 

is not legal ML since there is no value for nonsense if the expression a is false. More 
specifically, the input “if a then 3” does not even parse correctly; there is no parse tree for 
this string in the syntax of ML.  

There are also ML boolean operations for and, or, not, and so on. These are similar to 
AND, OR, NOT in Pascal or &&, || and ! in C, with some minor differences. Negation is 
written not, conjunction (and) is written andalso and disjunction (or) is written orelse. For 
example, here is a function that determines whether its two arguments have the same 
Boolean value, followed by an expression that calls this function: 

— fun equiv(x,y) = (x andalso y) orelse ((not x) andalso (not y)); 

val equiv = fn : bool * bool -> bool 

— equiv(true,false); 

val it = false : bool 

In words, Boolean arguments x and y are the same Boolean value if they are either both 
true or both false. The first subexpression, (x andalso y), is true if x and y are both true and 
the second subexpression, ((not x) andalso (not y)), is true if they are both false.  

The reason for the long names andalso and orelse is to emphasize evaluation order. In an 
expression (a andalso b), where a and b are both expressions, a is evaluated first. If a is 
true, then b is evaluated. Otherwise, the value of expression (a andalso b) is determined to 
be false without evaluating b. Similarly, b in (a orelse b) is evaluated only if the value of a 
is false. 
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Integers  
Many ML integer expressions are written in the usual way, with number constants and 
standard arithmetic operations: 

0,1,2,...,-1,-2,... : int 

+, -, *, div : int * int → int 

The operator div is a binary infix operator on integers, used as follows: 

— fun quotient(x,y) = x div y; 

val quotient = fn : int * int → int 

The identifier div by itself is not an expression, though. Similarly, +, -, and * are infix 
binary operators. 

Strings  
Strings are written as sequence of symbols between double quotes: 

"William Jefferson Clinton" : string 

"Boris Yeltsin" : string  

String concatenation is written ^, so we have 

— "Chelsey" ^ " " ^ "Clinton"; 

val it = "Chelsey Clinton" : string 

Real  
The ML type for floating point numbers is real. For reasons that will be easier to 
understand when we come to type inference, ML requires a decimal point in real 
constants: 

1.0, 2.0, 3.14159, 4.44444, … : real 

The arithmetic operators +, -, and * may be applied to either integers or real numbers. 
Here are some example expressions and the resulting compiler output: 

— 3+4; 

val it = 7 : int 

— 4.0 + 5.1; 

val it = 9.1 : real 

Notice that when + has two integer arguments, the result is an integer and when + has 
two real arguments, the result is a real. However, it is a type error to combine integer and 
real arguments. Here is part of the compiler output for an expression adding an integer to 
a real: 

— 4+5.1; 

stdIn:1.1-1.6 Error: operator and operand don't agree [literal] 

  operator domain: int * int 
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  operand:         int * real 

This error message is telling us that since the first argument is an integer, the + symbol is 
considered to be integer addition. Therefore, the operator + has domain int * int, which is 
ML notation for the type of pairs of integers. However, the operand is applied to a pair of 
type int * real, which is ML notation for the type of pairs with one integer and one real.  

Conversion from integer to real is done by explicit conversion function real. For example, 
the value of the expression real(3) is 3.0. Conversion from real to integer can be done 
using functions floor (round down), ceil (round up), round,  and trunc. 

Although arithmetic expressions in ML are a little more cumbersome than some other 
languages, the language is generally usable for most purposes. In part, explicit typing of 
numeric constants and explicit conversion is the price to pay for automatic type inference, 
a useful feature of ML described in Chapter 6. 

Tuples  
A tuple may be a pair, triple, quadruple, and so on. In ML, tuples may be formed of any 
types of values.  Tuple values are written using parentheses and tuple types are written 
using *. For example, here is the compiler output for a pair, a triple, and a quadruple: 

— (3,4); 

val it = (3,4) : int * int 

— (4,5,true); 

val it = (4,5,true) : int * int * bool 

— ("Bob", "Carol", "Ted", "Alice"); 

val it = ("Bob","Carol","Ted","Alice") : string * string * string * string 

For all types τ1 and τ2, the type τ1 * τ2 is the type of pairs whose first component has type 
τ1 and whose second component type τ2.The type τ1 * τ2 * τ3 is a type of triples, τ1 * τ2 * τ3 

* τ4  a type of quadruples, and so on. 

Components of a tuple are accessed by functions that name the position of the desired 
component. For example, #1, selects the first component of any tuple, #2, the second 
component of any tuple with at least two components, and so on. Here are some 
examples:  

— #2(3,4); 

val it = 4 : int 

— #3("John", "Paul", "George", "Ringo"); 

val it = "George" : string 

Records  
Like Pascal records and C structs, ML records are similar to tuples, but with named 
components. Record values and record types are written with curly braces, as follows: 

- { First_name = "Donald", Last_name = "Knuth" }; 
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val it = {First_name="Donald",Last_name="Knuth"} 

  : {First_name:string, Last_name:string} 

The expression here has two components, one called First_name and the other called 
Last_name. The type of this record tells us the type of each component. Record 
components can be accessed using # functions like tuples, but named according to the 
component names instead of position. Here is one example: 

— #First_name( {First_name="Donald", Last_name="Knuth"} ); 

val it = "Donald" : string 

Another way of selecting components of tuples and records is by pattern matching, 
described in Section 5.4.3. 

Lists  
ML lists can have any length, but all elements of a list must have the same type. Lists can 
be written by listing their elements, separated by commas, between square brackets. Here 
are some example lists of different types: 

— [1,2,3,4]; 

val it = [1,2,3,4] : int list 

— [true, false]; 

val it = [true,false] : bool list 

— ["red", "yellow", "blue"]; 

val it = ["red","yellow","blue"] : string list 

— [ fn x => x+1, fn x => x+2]; 

val it = [fn,fn] : (int -> int) list 

For short lists, the compiler prints the elements of the list when showing that a list 
expression has been evaluated. For longer lists, the last elements are replaced by an 
ellipsis (three dots: …). As the last list example above shows, it is possible to write a list 
of functions.  

In general, τ  list is the type of all lists whose elements have type τ. 

Like Lisp, the empty list is written nil in ML. List cons is an infix operator written as a 
pair of colons: 

—  3 :: nil; 

val it = [3] : int list 

— 4 :: 5 :: it; 

val it = [4,5,3] : int list 

In the first list expression, 3 is “consed” onto the front of the empty list. The result is a 
list containing the single element 3. In the second expression, 4 and 5 are “consed” onto 
this list. In both cases, the result is an int list. 
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5.4.3 Patterns, declarations and function expressions 
The declarations we have seen so far bind a value to a single identifier. One very 
convenient syntactic feature of ML is that declarations can also bind values to a set of 
identifiers, using patterns. 

Value declarations 
The general form of value declaration associates a value with a pattern. A pattern is an 
expression containing variables (such as x, y, z, …) and constants (such as true, false, 1, 
2, 3, …), combined using certain forms such as tupling, record expressions, and a form of 
operation called a constructor. The general form of value declaration is 

val <pattern> = <exp> ;  

Where the common forms of patterns are summarized by the following grammar 

<pattern> ::= <id> | <tuple> | <cons> | <record>  | <constr>  

 <tuple>  ::= (<pattern>, ..., <pattern>) 

<cons>  ::=  <pattern>::pattern  

 <record>  ::= {<id>=<pattern>, ..., <id>=<pattern>} 

 <constr>  ::= <id>(<pattern>, ..., <pattern>) 

In words, a pattern can be an identifier, a tuple pattern, a list cons pattern, a record 
pattern, or a declared datatype constructor pattern. A tuple pattern is a sequence of 
patterns between parentheses, a list cons pattern is two patterns separated by double 
colons, a record pattern is a record-like expression with each field in the form of a 
pattern, and a constructor pattern is an identifier (a declared constructor) applied to the 
right number of pattern arguments. This BNF does not define the set of patterns exactly, 
since some conditions on patterns are not context free and therefore cannot be expressed 
using BNF. For example, the conditions that in a constructor pattern the identifier must 
be a declared constructor and that the constructor must be applied to the right number of 
pattern arguments are not context-free conditions. An additional condition on patterns, 
discussed below in connection with function declarations, is that no variable can occur 
twice in any pattern. 

Since a variable is a pattern, a value declaration can simply associate a value with a 
variable. For example, here is a declaration binding a tuple to one identifier, followed by 
a declaration that uses a tuple pattern to bind components of the tuple: 

— val t = (1,2,3); 

val t = (1,2,3) : int * int * int 

— val (x,y,z) = t; 

val x = 1 : int 

val y = 2 : int 

val z = 3 : int 
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Notice that there are two lines of input in this example and four lines of compiler output. 
In the first declaration, the identifier t is bound to a tuple. In the second declaration, the 
tuple pattern (x,y,z) is given the value of t. Matching the pattern (x,y,z) against the triple 
t, identifier x gets value 1, identifier y gets value 2, and identifier z gets value 3.  

Function declarations  
The general form of a function declaration uses patterns. A single-clause definition has 
the form 

fun f( <pattern> ) = <exp>  

and a multiple-clause definition has the form  

fun f( <pattern1> ) = <exp1> | ... |  f( <patternn> ) = <expn>  

For example, a function adding its arguments can be written 

fun f(x,y) = x + y; 

Technically, the formal parameter of this function is a pattern (x, y) which must match the 
actual parameter on a call to f. The formal parameter to f is a tuple, which is broken down 
by pattern matching into its first and second components. You may think you are calling 
a function of two arguments. In reality, you are calling a function of one argument. That 
argument happens to be a pair of values. Pattern matching takes the tuple apart, binding x 
to what you might think is the first parameter, and y to the second.  

An example using more than one clause is the following function computing the length of 
a list: 

— fun length(nil) = 0  

|   length( x :: xs ) = 1 + length(xs); 

 val length = fn : 'a list → int 

This code is explained below. The first two lines here are input (the declaration of 
function length) and the last line is the compiler output giving the type of this function. 
Here is an example application of length and the resulting value: 

— length [“a”, “b”, “c”, “d”]; 

val it = 4 : int 

When the function length is applied to an argument, the clauses are matched in the order 
they are written. If the argument matches the constant nil (i.e., the argument is the empty 
list), then the function returns the value 0, as specified by the first clause. Otherwise, the 
argument is matched against the pattern given in the second clause, (x::xs), and then the 
code for the second branch is executed. Because type checking guarantees that length will 
only be applied to a list, these two clauses cover all values that could possibly be passed 
to this function. The type of length, 'a list → int, will be explained in the next chapter. 

In addition to declarations, ML has syntax for anonymous functions. We have already 
seen some simple examples. The general form allows the argument to be given by a 
pattern:  
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fn <pattern> => <exp>,  

As mentioned briefly in passing in an earlier example, fn <pattern> => <exp> is like 
(lambda (<parameters>) (<exp>)) in Lisp. Here is an example, with compiler output. 

— fn (x,y) => x+y; 

val it = fn : int * int → int 

The function expressed here takes a pair and adds its two components. The type of this 
function is int * int → int, meaning a function that maps a pair of integers to a single 
integer. 

Here are some more examples illustrating other forms of patterns, each shown with 
associated compiler output: 

— fun f(x, (y,z)) = y; 

val f = fn : 'a * ('b * 'c) -> 'b 

— fun g(x::y::z) = x::z; 

val g = fn : 'a list -> 'a list 

— fun h {a=x, b=y, c=z} = {d=y, e=z}; 

val h = fn : {a:'a, b:'b, c:'c} -> {d:'b, e:'c} 

The first is a function on nested tuples, the second a function on lists that have at least 
two elements, and the third a function on records. The second declaration produces a 
compiler warning, since the function g is not defined for lists that have fewer than 2 
elements.  

Pattern-matching is applied in order. For example, when the function  

fun f (x,0) = x 

|     f (0,y) = y 

|     f (x,y) = x+y; 

is applied to an argument (a,b), the first clause is used if b=0, the second clause if b≠0 and 
a=0, and the third clause if b≠0 and a≠0. The ML type system will keep f from being 
applied to any argument that is not a pair  (a,b). 

An important condition on patterns is that no variable can occur twice in any pattern. For 
example, the following function declaration is not syntactically correct since the identifier 
x occurs twice in the pattern: 

—  fun eq(x,x) = true 

       |   eq(x,y) = false; 

stdIn:24.5-25.20 Error: duplicate variable in pattern(s):  

This function is not allowed since multiple occurrences of variables express equality and 
equality must be written explicitly into the body of a function. 
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5.4.4 ML datatype declaration 
The ML datatype declaration is a special form of type declaration, declaring a type name 
and operations for building and making use of elements of the type.  The ML datatype 
declaration has the syntactic form  

datatype <type_name> = <constructor_clause> | ... | <constructor_clause> 

where a constructor clause has the form  

<constructor_clause>  ::=   <constructor>  | <constructor> of <arg_types> 

The idea is that each constructor clause tells one way to construct elements of the type. 
Elements of the type may be "deconstructed" into their constituent parts by pattern 
matching. This is illustrated by three examples that show some common ways of using 
datatype declarations in ML programs.  

Example: An enumerated datatype 
Types consisting of a finite set of tokens can be declared as ML datatypes. Here is a type 
consisting of three tokens, named to indicate three specific colors: 

— datatype color = Red | Blue | Green; 

datatype color = Blue | Green | Red 

The compiler output, which looks just like the ML input code, indicates that the three 
elements of type color are Blue, Green, and Red. Technically, values Blue, Green, and 
Red are called constructors. They are called constructors because they are they the ways 
of constructing values with type color.  

Example: A tagged union datatype 
ML constructors can be declared so that they must be applied to arguments when 
constructing elements of the datatype. Constructors do not actually do anything to their 
arguments, other than to “tag” their arguments so that values constructed in different 
ways can be distinguished by pattern matching.  

Suppose we are keeping student records, with names of BS students, names and 
undergraduate institutions of MS students, and names and faculty supervisors of PhD 
students. Then we could define a type student allowing these three forms of tuples as 
follows:  

— datatype student = BS of name | MS of name*school | PhD of name*faculty; 

In this datatype declaration, BS, MS and PhD are each constructors. However, unlike the 
color example, each student constructor must be applied to arguments to construct a value 
of type student. We must apply BS to a name, MS to a pair consisting of a name and a 
school, and PhD to a pair consisting of a name and a faculty name in order to produce a 
value of type student.  

In effect, the type student is the union of three types  

student ≈ union {name, name*school, name*faculty } 
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except that in ML “unions” (which are defined using datatype),  each value of the union is 
tagged by a constructor that tells which of the constituent types the value comes from. 
This is illustrated in the following function, which returns the name of a student: 

—  fun name(BS(n)) = n 

       |   name(MS(n,s)) = n 

       |   name(PhD(n,f)) = n; 

val name = fn : student → name 

The first three lines are the declaration of the function name and the last line is the 
compiler output indicating that name is a function from students to names. The function 
has three clauses, one for each form of student. 

Example: A recursive type 
Datatype declaration may be recursive in that the type name may appear in one or more 
of the constructor argument types. Because of the way type recursion is implemented, 
ML datatype provides a convenient, high-level language construct that hides a common 
form of routine pointer manipulation. 

The set of trees with integer labels at the leaves may be defined mathematically as 
follows:  

A tree is either 
a leaf, with an associated integer label, or  
a compound tree, consisting of a left subtree and a right subtree  

This definition can be expressed as an ML datatype declaration, with each part of the 
definition corresponding to a clause of the datatype declaration:  

datatype tree = LEAF of int |  NODE of (tree * tree); 

The identifiers LEAF and NODE are constructors, and the elements of the datatype are all 
values that can be produced by applying constructors to legal (type-correct) arguments. In 
words, a tree is either the result of applying the constructor LEAF to an integer (signifying 
a leaf with that integer label), or the result of applying the constructor NODE to two trees. 
These two trees, of course, must be produced similarly using constructors LEAF and 
NODE.  

The function below shows how the constructors may be used to define a function on 
trees.  

—  fun inTree(x, LEAF(y)) = x = y 

     |      inTree(x, NODE(y,z)) = inTree(x, y) orelse inTree(x, z); 

val inTree = fn : int * tree → bool 

This function looks for a specific integer value x in a tree. If the tree has the form 
LEAF(y), then x is in the tree only if x=y. If the tree has the form NODE(y,z), with subtrees y 
and z, then x is in the tree only if x is in the subtree y or the subtree z. The type output by 
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the compiler shows that inTree is a function that, given an integer and a tree, returns a 
Boolean value. 

An example of a polymorphic datatype declaration appears in Section 6.5.3, after the 
discussion of polymorphism in Chapter 6. 

5.4.5 ML reference cells and assignment 
None of the ML constructs discussed in earlier sections of this chapter have side effects. 
Each expression has a value, but evaluating an expression does not have the side effect of 
changing the value of any other expression. While most large ML programs are written in 
a style that avoids side effects when possible, most large ML programs do use assignment 
occasionally to change the value of a variable. 

The way that assignable variables are presented in ML is different from the way that 
assignable variables appear in other programming languages. The main reasons for this 
are to preserve the uniformity of ML as a programming language and to separate side 
effects from pure expressions as much as possible.  

ML assignment is restricted to reference cells. In ML, a reference cell has a different type 
than immutable values such as integers, strings, lists, and so on. Since reference cells 
have specific reference types, restrictions on ML assignment are enforced as part of the 
type system. This is part of the elegance of ML: almost all restrictions on the structure of 
programs are part of the type system, and the type system has a systematic, uniform 
definition.  

L-values and R-values  
Before looking at assignment in ML, let us think about the difference between memory 
locations and their contents. This distinction is part of machine architectures (memory 
locations contain data) and relevant to many programming languages. The following 
pseudo-code fragment illustrates the idea: 

x : int; 

y : int; 

x := y + 3; 

In the assignment, the value stored in variable y is added to 3 and the result stored in the 
location for x. The central point is that the two variables are used differently. The 
command only uses the value stored in y and does not depend on the location of y. In 
contrast, the command uses the location of x, but does not depend on the value stored in x 
before the assignment occurs.  

The location of a variable is called its L-value and the value stored in this location is 
called the R-value of the variable. This is standard terminology that you will see in many 
books on programming languages. The two values are called L and R to stand for “left” 
and “right”, since typically we use L-values on the left-hand sides of an assignment 
statement and R-values on the right-hand side.  
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ML reference cells 
In ML, L-values and R-values have different types. In other words, an assignable region 
of memory has a different type than a value that cannot be changed. In ML, an L-value, 
or assignable region of memory, is called a reference cell. The type of a reference cell 
indicates that it is a reference cell and specifies the type of value that it contains. For 
example, a reference cell that contains an integer has type int ref, meaning an “integer 
reference cell.”  

When a reference cell is created, it must be initialized to a value of the correct type. 
Therefore, ML does not have uninitialized variables or dangling pointers. When an 
assignment changes the value stored in a reference cell, the assignment must be 
consistent with the type of the reference cell: an integer reference cell will always contain 
an integer, a list reference cell will always contain (or refer to) a list, and so on. 

Operations on reference cells  
ML has operations to create reference cells, to access their contents, and to change their 
contents. These are ref, ! and :=, which behave as follows: 

ref v   —   create a reference cell containing value v 

! r       —   return the value contained in reference cell r 

r := v  —   place value v in reference cell r 

Here are some examples: 

—  val x = ref 0; 

val x = ref 0 : int ref 

—  x := 3*(!x) + 5; 

val it = () : unit 

—  !x; 

val it = 5 : int 

The first input line binds identifier x to a new reference cell with contents 0. As the 
compiler output indicates, the value of x is this reference cell, which has type int ref. The 
next input line multiplies 3 times the contents of x, adds 5, and stores the resulting integer 
value in cell x. Since ML is expression oriented, this “statement” is an ML expression. 
The type of this expression is unit which, as described earlier, is the type used for 
expressions that are evaluated for side effect. The last input line is an expression reading 
the contents of x, which is the integer 5. 

Since ML does not have any operations for computing the address of a value, there is no 
way to observe whether assignment is by value or by pointer. As a result, it is a 
convenient and accurate abstraction to regard a reference cell as a box holding a value of 
any size and regard assignment as an operation that places a value inside the box. For 
example, the code above that creates a reference cell named x and changes its contents 
can be visualized as follows, with the double arrow indicating changes as a result of 
assignment. 
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Since reference cells can be created for any type of value, we can define a string 
reference cell and change its contents by assignment. 

—  val y = ref "Apple"; 

val y = ref "Apple" : string ref 

—  y := "Fried green tomatoes"; 

val it = () : unit 

—  !y; 

val it = "Fried green tomatoes" : string 

As in the integer example, the associated reference cell can be visualized as a box that 
can contain any string. 

 

As you know, different strings may require different amounts of memory. Therefore, it 
does not seem likely that the memory cell bound to y can hold any string of any length. In 
fact, when the declaration val y = ref "Apple" is processed, storage is allocated to contain 
the string “Apple” and the reference cell y is initialized to a pointer to this location. When 
the assignment y := "Fried green tomatoes" is executed, the contents of the cell y are changed 
to a pointer to “Fried green tomatoes”. Comparing the integer and string examples, ML 
assignment is implemented as ordinary value assignment for some types of cells and 
pointer assignment for others. However, since ML has no way of finding the address of 
an expression, this implementation difference is completely hidden from the programmer. 
If a compiler writer wanted to implement integer assignment as pointer assignment, all 
programs would behave in exactly the same way. 

Here is one last simple code example to show how ML reference cells may be used in an 
iterative loop. This loop sums the numbers between 1 and 10. 

val i = ref 0; 

val j = ref 0; 

while !i < 10 do (i := !i + 1;j := !j + !i); 

!j; 

In the first two lines, the identifiers i and j are bound to new reference cells initialized to 
value 0. The while loop increments i until !i, the contents of i, is not less than 10. The 
final expression reveals the final value of j, since the compiler prints the value of !j. Some 

0 
x x  := 5: 

5 
x 

Apple 
y y  :=  “Fried …” 

Fried green tomatoes 
y 
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important details are that a test “i < 10” would not be legal, since this compares a 
reference cell to an integer. Similarly, “i := i+1” is not legal since a reference cell cannot 
be added to 1; only integers or real numbers can be added.  

As illustrated in this example, two imperative expressions can be combined using a 
semicolon. Parentheses are used to keep the while loop above from parsing as a loop 
followed by j := !j+i. In fact, a semicolon can be used to combine any two expressions. 
The expression 

e1; e2 

is equivalent to 

(fn x => e2) e1 

where x is chosen not to appear in e2. As a result, the value of e1; e2 is the value of e2, 
after e1 has been evaluated. 

Typing imperative operations: As mentioned above, reference cells have a different type 
than the values they contain. Here is the typing rule: 

 If expression e has type τ, then the expression ref e has type τ ref. 

The function ! can be applied to any argument of type τ ref and assignment  x := e is only 
type correct if x has type τ ref and e has type τ, for some type τ. In summary: 

 x : int          —    not assignable (like a constant in other languages) 

 y : int ref     —    assignable reference cell 

5.4.6 ML Summary  
ML is a programming language that encourages programming with functions. It is easy to 
define functions with function arguments and function return results. In addition, most 
data structures in ML programs are not assignable. Although it is possible to construct 
reference cells for any type of value and modify reference cells by assignment, side 
effects occur only when reference cells are used. While most large ML programs do use 
reference cells and side effects, the pure parts of ML are expressive enough that reference 
cells are used sparingly.  

ML has an expressive type system. There are basic types for many common kinds of 
computable values, such as Booleans, integers, strings, and reals. There are also type 
constructors, which are type operators that can be applied to any type. The type 
constructors include tuples, records, and lists. In ML, it is possible to define tuples of lists 
of functions, for example. There is no restriction on the types of values that can be placed 
in data structures. 

The ML type system is often called a “strong type system,” since every expression has a 
type and there are no mechanisms for subverting the type system. When the ML type 
checker determines that an expression has type int, for example, then any successful 
evaluation of that expression is guaranteed to produce an integer. There are no dangling 
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pointers that refer to unallocated locations in memory and no casts that allow values of 
one type to be treated as values of another type without conversion. 

ML has several forms that allow programmers to define their own types and type 
constructors. In this chapter, we looked at datatype declarations, which can be used to 
define ML versions of enumerated types (types consisting of a finite list of values), 
disjoint unions (types whose elements are drawn from the union of two or more types), 
and recursively-defined types. Another important aspect of the ML type system is 
polymorphism, which we will study in the next chapter, along with other aspects of the 
ML type system. We will discuss additional type definition and module forms in Chapter 
9. 

5.5 Chapter Summary  
In this chapter, we discussed some of the basic properties of Algol-like languages and 
examined some of the advances and problem areas in Algol 60, Algol 68, Pascal, and C. 
The Algol family of languages established the command-oriented syntax, with blocks, 
local declarations, and recursive functions, that are used in most current programming 
languages. The Algol family of languages are all statically typed, since each expression 
has a type that is determined by its syntactic form and the compiler checks before running 
the program to make sure that the types of operations and operands agree. In looking at 
the improvements from Algol 60 to Algol 68 to Pascal, we saw improvements in the 
static type systems.  

The C programming language is similar to Algol 60, Algol 68, and Pascal in some 
respects: command-oriented syntax, blocks, local declarations, and recursive functions. 
However, C also shares some features with its untyped precursor BCPL, such as pointer 
arithmetic. C is also more restricted than most Algol-based languages in that functions 
cannot be declared inside nested blocks: all functions are declared outside the main 
program. This simplifies storage management for C, as we will see in Chapter 7.  

In the second half of this chapter, we looked at the ML programming language in more 
detail than the Algol family of languages. One reason to study ML is that this language 
combines many if the important features of the Algol family with features of Lisp; this 
language provides a good summary of the important language features that developed 
prior to 1980.  

The part of ML that we covered in this chapter comes from what is called “core ML.” 
This is ML without the module features that were added in the 1980s. Core ML has the 
following types 

unit, Booleans, integers, strings, reals, tuples, lists, records 

and the following constructs 

patterns, declarations, functions, polymorphism, overloading, type declarations, 
reference cells, exceptions.We discussed most of these in this chapter, except 

polymorphism, which is covered in Chapter 6, and exceptions, which are studied in 
Chapter 8. We summarized the study of ML in this chapter in Section 5.4.6. 



 113

5.6 Exercises 
(*  Insert exercises from LaTeX files  *) 

 

 


