
Homework 7
Due 26 November

Handout 21
CS242: Autumn 2003

19 November

(Print your name)

Prob # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 Total
C+
C
C-
0

Note: Please either write your answers in the space provided or typeset your solution.

Reading

1. Chapter 12, C++, and Chapter 13, Java.

Problems

1. C++ Conversions
C++ allows the programmer to specify how to convert between different classes. This can be very
useful when you are passing around objects by value, as the default behavior is not always what
is desired. If you are unfamiliar with C++, you may find Bruce Eckel’s Thinking in C++, 2nd Ed
helpful. It is freely available on the web, via http://www.mindview.net/Books/.

(a) What is printed by the following code and why? Your answer should be three sentences or
less.

#include <iostream>
using namespace std;

class A {
public:
virtual void foo() { cout << ‘‘A::foo\n’’ << endl; }
};

class B : public A {
public:
virtual void foo() { cout << ‘‘B::foo\n’’ << endl; }
};

void test(A a);

void test(A a) {
a.foo();
};

1

int main() {
A a;
B b;
test(a);
test(b);
}

(b) C++ provides an interesting mix of features for converting between objects of different
types. The two primary language features are copy constructors and operator conversion.
Like many parts of C++ they can surpise people. Explain why the following code prints
bork
bork

instead of
bork
B::foo

or
bork
bark

could this problem be solved by using a copy constructor instead? Explain briefly.

#include <iostream>
using namespace std;

class A {
public:

char *s;
virtual void foo() { cout << s << endl; }
A() : s(‘‘bork’’) {}

};

class B : public A {
public:

virtual void foo() { cout << ‘‘B::foo’’ << endl; }
operator A() const { A a; a.s = ‘‘bark’’; return a; }

};

void test(A a);

void test(A a) {
a.foo();

};

int main() {
A a;
B b;
test(a);
test(b);

}

2

(c) C++ is the only mainstream object oriented language that does not hide its objects behind
pointers or references. You have just seen how this can cause an intersting set of problems
when programmers pass objects by value. What two character edit can you do to the
original code to make it work as expected?

2. C++ Multiple Inheritance and Casts
An important aspect of C++ object and virtual function table (vtbl) layout is that if class D has
class B as a public base class, then the initial segment of every D object must look like a B object,
and similarly for the D and B virtual function tables. The reason is that this makes it possible to
access any B member data or member function of a D object in exactly the same way we would
access the B member data or member function of a B object. While this works out fairly easily
with only single inheritance, some effort must be put into the implementation of multiple
inheritance to make access to member data and member functions uniform across publicly
derived classes.
Suppose class C is defined by inheriting from classes A and B:

class A {
public:

int x;
virtual void f();

};
class B {

public:
int y;
virtual void f();
virtual void g();

};
class C : public A, public B {

public:
int z;

3

virtual void f();
};
C *pc = new C; B *pb = pc; A *pa = pc;

and pa, pb and pc are pointers to the same object, but with different types. The representation
of this object of class C and the values of the associated pointers are illustrated in this chapter.

(a) Explain the steps involved in finding the address of the function code in the call pc->f().
Be sure to distinguish what happens at compile time from what happens at run time.
Which address is found, &A::f(), &B::f(), or &C::f()?

(b) The steps used to find the function address for pa->f() and to then call it are the same as
for pc->f(). Briefly explain why.

(c) Do you think the steps used to find the function address for and to call pb->f() have to be
the same as the other two, even though the offset is different? Why or why not?

(d) How could the call pc->g() be implemented?

4

3. Multiple Inheritance and Thunks
Suppose class C is defined by inheriting from classes A and B:

class A {
public:

virtual void g();
int x;

};
class B {

public:
int y;
virtual B* f();
virtual void g();

};
class C : public A, public B {

public:
int z;
virtual C* f();
virtual void g();

};
C *pc = new C; B *pb = pc; A *pa = pc;

and pa, pb and pc are pointers to the same object, but with different types.
Then, pa and pc will contain the same value, but pb will contain a different value; it will
contain the address of the B part of the C object. The fact that pb and pc do not contain the same
value means that in C++, a cast sometimes has a run-time cost. (In C this is never the case.)
Note that in our example B::f and C::f do not return the same type. Instead, C::f returns a
C* while B::f returns a B*. That is legal because C is derived from B, and thus a C* can always
be used in place of a B*.
However, there is a problem: when the compiler sees pb->f() it doesn’t know whether the call
will return a B* or a C*. Since the caller is expecting a B*, the compiler must make sure to
return a valid pointer to a B*. The solution is to have the C-as-B vtable contain a pointer to a
thunk. The thunk calls C::f, and then adjusts the return value to be a B*, before returning.

(a) Draw all of the vtables for the classes in these examples. Show to which function each
vtable slot points.

(b) Does the fact that casts in C++ sometimes have a run-time cost, while C never does, indicate

5

that C++ has not adhered to the principles given in class for its design? Why or why not?

(c) Since thunks are expensive, and since C++ only charges programmers for features they use,
there must be a feature, or combination of features, that are imposing this cost. What
feature or features are these?

4. Dispatch on State
One criticism of dynamic dispatch as found in C++ and Java is that it is not flexible enough. The
operations performed by methods of a class usually depend on the state of the receiver object.
For example, we have all seen code similar to the following file implementation:

class StdFile {
private:

enum { OPEN, CLOSED } state; /* state can only be either OPEN or CLOSED */

public:
StdFile() { state = CLOSED; } /* initial state is closed */
void Open() {

if (state == CLOSED) {
/* open file ... */
state = OPEN;

} else {
error "file already open";

}
}
void Close() {

if (state == OPEN) {
/* close file ... */
state = CLOSED;

} else {
error "file not open";

}
}

}
}

6

Each method must determine the state of the object (i.e., whether or not the file is already open)
before performing any operations. Because of this, it seems useful to extend dynamic dispatch to
include a way of dispatching not only on the class of the receiver, but also on the state of the
receiver. Several object-oriented programming languages, including BETA and Cecil, have
various mechanisms to do this. This problem will examine two ways in which we can extend
dynamic dispatch in C++ to depend on state. First, we present dispatch on three pieces of
information:

• the name of the method being invoked
• the type of the receiver object
• the explicit state of the receiver object

As an example, the following declares and creates objects of the File class using the new
dispatch mechanism

class File {
state in { OPEN, CLOSED }; /* declare states that a File object may be in */

public:
File() { state = CLOSED; } /* initial state is closed */
switch(state) {

case CLOSED: {
void Open() { /* 1 */

/* open file ... */
state = OPEN;

}
void Close() {

error "file not open";
}

}

case OPEN: {
void Open() { /* 2 */

error "file already open";
}
void Close() {

/* close file ... */
state = CLOSED;

}
}

}

File* f = new File();
f->Open(); /* calls version 1 */
f->Open(); /* calls version 2 */
...

The idea is that the programmer can provide a different implementation of the same method for
each state that the object can be in.

7

(a) Describe one advantage of having this new feature, i.e., are there any advantages to writing
classes like File over classes like StdFile. Describe one disadvantage of having this new
feature.

(b) For this part of the problem, assume that subclasses can not add any new states to the set
of states inherited from the base class. Describe an object representation that allows for
efficient method lookup. Method call should be as fast as virtual method calls in C++, and
changing the state of an object should be a constant time operation. (Hint: you may want to
have a different vtable for each state). Is this implementation acceptable according to the
C++ design goal of only paying for the features which you use?

(c) What problems arise if subclasses are allowed to extend the set of possible states? For
example, we could now write a class like:

class SharedFile: public File {
state in { OPEN, CLOSED, READONLY }; /* extend the set of states */
...

}

8

Do not try to solve any of these problems. Just identify several of them.

(d) We may generalize this notion of dispatch base on the state of an object to dispatch based
on any predicate test. For example, consider the following Stack class:

class Stack {
private:

int n;
int elems[100];

public:
Stack() { n = 0; }

when(n == 0) {
int Pop() {

error "empty";
}

}

when(n > 0) {
int Pop() {

return elems[--n];
}

}
...

}

Is there an easy way to extend your proposed implementation in part b to handle dispatch
on predicate tests? Why or why not?

9

5. Java final and finalize
Java has keywords final and finalize.

(a) Describe one situation where you would want to mark a class final, and another where
you would want a final method but not a final class.

(b) Describe the similarity and differences between Java final and the C++ use of
non-virtual in similar situations.

(c) Why is Java finalize (the other keyword!) a useful feature?

6. Java Interfaces and Multiple Inheritance
In C++, a derived class may have multiple base classes. In contrast, a Java derived class may
only have one base class but may implement more than one interface. This question asks you to
compare these two language designs.

(a) Draw a C++ class hierarchy with multiple inheritance using the following classes:
Pizza, for a class containing all kinds of pizza,
Meat, for pizza that has meat topping,
Vet, for pizza that has vegetable topping,
Sausage, for pizza that has sausage topping,
Ham, for pizza that has ham topping,
Pineapple, for pizza that has pineapple topping,
Mushroom, for pizza that has mushroom topping,
Hawaiian, for pizza that has ham and pineapple topping.

10

For simplicity, treat sausage and ham as meats and pineapple and mushroom as vegetables.

(b) If you were to implement these classes in C++, for some kind of pizza manufacturing robot,
what kind of potential conflicts associated with multiple inheritance might you have to
resolve?

(c) If you were to represent this hierarchy in Java, which would you define as interfaces and
which as classes? Write your answer by carefully redrawing your picture, identifying which
are classes and which are interfaces. If your program creates objects of each type, you may
need to add some additional classes. Include these in your drawing.

11

(d) Give an advantage of C++ multiple inheritance over Java classes and interfaces and one
advantage of the Java design over C++.

7. Adding pointers to Java
Java does not have general pointer types. More specifically, Java has primitive types (Booleans,
integers, floating point numbers, . . .) and reference types (objects and arrays). If a variable has
a primitive type, then the variable is associated with a location and a value of that type is stored
in that location. When a variable of primitive type is assigned a new value, a new value is copied
into the location. In contrast, variables of reference type are implemented as pointers. When a
variable referring to an object is assigned a value, the location associated with the variable will
contain a pointer to the appropriate object.
Imagine that you were part of the Java design team and you believe strongly in pointers. You
want to add pointers to Java, so that for every type A, there is a type A* of pointers to values of
type A. Gosling is strongly opposed to adding an “address of” operator (like & in C), but you
think there is a useful way of adding pointers without adding address-of.
One way of designing a pointer type for Java is to consider A* equivalent to the following class:

class A* {
private A data=null;
public void assign(A x) {data=x;};
public A deref(){return data;}
A*(){};

};

Intuitively, a pointer is an object with two methods, one assigning a value to the pointer and the
other dereferencing a pointer to get the object it points to. One pointer, p, can be assigned the
object reached by another, q, by writing p.assign(q.deref()) The constructor A* does not do
anything because the initialization clause sets every new pointer using the null reference.

(a) If A is a reference type, do A* objects seem like pointers to you? More specifically, suppose A
is a Java class with method m that has a side effect on the object and consider the following
code:

A x = new A(...);
A* p = new A*();
p.assign(x);
(p.deref()).m();

Here, pointer p points to the object named by x and p is used to invoke a method. Does this
modify the object named by x? Answer in one or two sentences.

12

(b) What if A is a primitive type, such as int? Do A* objects seem like pointers to you? (Hint:
Think about the code in part (a).) Answer in one or two sentences.

(c) If A <: B, should A∗ <: B∗? Answer this question by comparing the type of A*::assign to
the type of B*::assign and comparing the type of A*::deref to the type of B*::deref.

(d) If Java had templates, then you could define a pointer template Ptr, with Ptr〈A〉 defined
like A* above. One of the issues that arises in adding templates to Java is subtyping for
templates. Based on the Ptr example, do you think it is correct to assume that for every
class template Template, if A <: B then Template〈A〉 <: Template〈B〉? Explain briefly.

8. Java Generics
One important language feature that is missing from Java is parametric polymorphism
(generics), which allows the same piece of code (e.g. a stack implementation) to operate on
different types of objects. The common workaround is to use the universal superclass Object
when objects of different types are expected. However, people often find it to be inconvenient,
error prone, and inefficient compared to a generic implementation (e.g. C++ Standard Template
Library).
There are two general ways to implement parameterized classes (templates). We will call these
the homogeneous and the heterogeneous approaches. In a homogeneous implementation, a type
parameter in a generic construct is given some specific type, such as Object, and run-time casts
are used as needed to provide appropriate functionality for different actual types at run time.
The “type erasure” implementation for Java 1.5 is an example of a homogeneous
implementation∗.
In a heterogeneous implementation, different uses of a generic construct may be implemented
differently at run time. One way to do this is simply to compile each use of a template

∗Interested (or sufficiently confused) readers might want to refer to examples (on pages 4 and 6) in the following paper:
http://www.cis.unisa.edu.au/%7Epizza/gj/Documents/gj-oopsla.pdf.

13

separately. Another implementation strategy produces a generic implementation of a template
at compile time, then instantiates the generic implementation before the code is executed. The
C++ implementation of templates is a hetergeneous implementation. In Java, separately
compiled templates could be instantiated at load time or at run time.
In thinking about implementing templates for Java, keep in mind that the virtual machine was
designed and built for a version of Java without templates.

(a) Describe briefly why the workaround described in the first paragraph is often
inconvenient, error prone and inefficient. Ideally, your answer should contain only one
sentence for each of the three shortcomings.
Inconvenient, because:

Error prone, because:

Inefficient, because:

(b) Which approach, homogeneous or heterogeneous, will give better backward compatibility
with existing compiled Java code? (Hint: consider the case where you need to pass a generic
linked list to some legacy code that expects a list of Objects).

Circle one: homogenous/heterogeneous
Why:

(c) What are the performance (timing) trade-offs between homogeneous and heterogeneous
implementations? Consider both compile-load-link time costs and run-time costs. (Hint:
recall the discussion on the implementation of parametric polymorphism in ML and C++ in
Section 6.4.2 of the book.) Fill in your answer in the table below.

Homogenous Heterogenous
(circle one) (circle one) Why?

Compile Time faster/slower faster/slower

Running Time faster/slower faster/slower

14

(d) What are the space trade-offs between homogeneous and heterogeneous implementations?
Consider both space used to represent data and code space. (Hint: again, Section 6.4.2
should help). Fill in your answer in the table below.

Homogenous Heterogenous
(circle one) (circle one) Why?

Data more space/ more space/
less space less space

Code more space/ more space/
less space less space

(e) Which approach allows more flexibility for supporting language features? Explain. Hint:
think about how or whether you can translate templates that create new objects of the
parameter type, as in this code fragment:

class MyClass <T> { ...
T myobject = new T();

... }

Circle one: homogenous/heterogeneous
Why:

***************** DO NOT WRITE BELOW THIS LINE *****************

15

