Page 1 of 71

From: “Dawson” <engler@Stanford. EDU>
Nowsgroups: suclass.cs240

Sent: Friday, October 21, 2005 3:46 PM
Subject: lecture notes

here's a partial set of notes. missing the bochm and rinard papers.

Worse is better notes

2 x e

1. How does Gabrial rank istency, and
for the two approaches?

the 100% solution versus the 90% solution (where does clegance fit in?)
(which would you prefer as consumer? as producer? why might production
favor producer?)

the right thing:
correctness & consistency

completeness

|

simple interface

|

simple implementation

inferred:

- must be correct

- must be consistent, can be less simple and less complete
10 avoid inconsistency)

- simplicity not allowed to overely reduce completeness

- more importaat for interface to be simple versus
implementatation

worse is better:
worse is better: almost ively d with j
simplicity, and will work on correciness, consistency and
completeness only cnough to get the job done.

10/23/2005

Page 3 of 71

simple could make blazingly fast.

what is the most important thing for worsc-is-better?

2. Why is pe-luscring such a bad example?

L. itisn't right.

2. even if it is right, what is the trivial fix?

3. why sacrifice correctness? (follow up: what docs correctness
cost with current design practices? (lime))
why sacrifice implementation simplicity? (why is it in intels
and msofts interest to design incredibly complex interfaces

and implementations?)

is there any picce of code you've used that is comrect?
(abmost certainly not)

1. As Gabriel states it, what are the featurcs of worse is better vs
the right thing?

the right thing: simplicity & & consistency &
are more or less equal.

worse is better: almost i with i
simplicity, and will work on correctness, consistency and
completeness only cnough to get the job done.

2. What are some famous that i ined in "worsce is

better?”

Do-it-all-at-once (right thing) vs piccemeal growth from something
simple that grows in response to needs. Lots of examples of

large sysiems in the latter:

- Internet

-web

- phonc network

- govt

- evolution (some of you are the right thing, most are

new jersey)

[anything big that grew all or nothing?]

nice feature: feedback rather than having to understand
a priori,

10/23/2005

Page 20f 71

implementation simplicity
! interface simplicity
-
cx:)nsislcncy

completeness
consisteny of interface

slightly better to be sipmle than corect

must not be overly inconsistent: can drop parts (hat introduce
either complexity or inconsistency

completeness can be sacriieced for any other quality (however,
contradict? consistency can be sacrificed to achicve completeness
-- hacks)

good enough.

key feature: many cases something is better than nothing. so having
asort of right solution is much much better than the years of
having nothing waiting for the right thing.

another: networking effect. if there is a non-trivial adoption
cost, then the more people that use it the more incentive for
other people to use it. language, OSes, chips. so you want to
be the defacto standard if possible and then improve.

msoft model?
- backwards compatibility (not simple, not correct. not consistent)
- features (completeness)

why is complexity good?

why might relcasing a few rot-perfect systems before the perfect
one be better? quick, charge each time, adapt to feedback.

handic all cormer cases vs handle the common casc.
reduces which costs?
- risk (simple thing out quick, modifications in direct
response to feedback)
~ time (out quick)
- cost (simple thing)

counter example sort of: the alpha chip. very much a 90% solution.
but also a right thing approach to simplicity; because it was so

10/23/2005

Page 4 of 71

Successful, complex system: will be around for a tong time.

Problem 1; have to live with mistakes.
Problem 2: correct choices will become mistakes.

Technology tradeofls change dramatically, putting lots
of pressure to modify - unfortunately, if successful,
change is difTicult becanse of installed basc.

kiss: “do it right vs do it simple”. One example: dynamic
allocation vs fixed sized. The right thing would be tailoring
everything to the right size. This has lots of costs, so

in many cascs you use a fixed size (or set of fixed sizes)
(machine instructions, money, [s,m,1] vs tailoring])

"get something out the door quickly”
Note: right thing vs worse is better is a continuum rather than

black/white. For example, if it crashes twice a week, but halves
the code size, should you do it?

He says this is a chamcature:
What are the schemes that these distont?

1. worse: concemed with finite resources and getting uscful
out the door. Incompleteness to get a working system.

2. better: assumes. want a system,
wants good algorithm from the literature. Completencss.

Pragmatics vs perfectionist?

1. give example of worse things and better things?

do these really fit with Gabriel's thing? what other things are going
on? what kind of different slanis can we give it?

Thappens with spoken languages --- English defacto standard,
other more elegant languages non-starters.

2. why is worse is better better?

acceptance to the widest possible market and then improve.
non-trivial adoption cost, then go (¢.g., don't really see this
with music (you buy vanilla ice and then stop), but do with
things like languages, etc)

lets say the right thing is X, and you can get there cither by

doing the right thing or by doing worse is better. which way
would you expect to make potentially (significantly) more moncy?

10/23/2005

Page50f 71

3. is there a better chamcterization than worse is better?
Microsoft seems to show that you can take worse even further.

and icity not atall. in fact many
successful things show that Slmplll:lly is not really all that
important: Perl, c++, x86, ..

4. advantages of incremental versus all or nothing?

~ old stuff still works. MIPS vs x86 (simple versus complex
and horrible, but non-trivial switching cost)

- iteration: get something out fast, find out what is wrong with
it, and do something. feedback is key. often, don't know how
1o solve the problem until you've solved it. here you can get
something out the door, get people using it (hard to switch)
then adapt to what they want.

5. What important variables does Gabriel ignore?

Cost is one big one, both in terms of how much you charge to sell,
and how much costs to build.

For example, lets say you have $50 bucks to make a new operating
system, how should we weigh simplicity, correciness, etc?

time is another.
risk.

Will a free system have better survival/promulgation features
than proprietary?

6. Is Gabriel right? is worse better?

after ten years, he doesn't actually know: wrole a serics
of papers:

worse is better (pro)

"worse js belter is worse" (con)

"is worse really better?" (pro)

models of software acceplance (pro)

"is worse (still) better?" (con) (position paper)
"worse (still) is better!" (month later, pro)
still can't decide

is a continuum (a relative ternm) rather than absolute
worse better
linux bsd

10/23/2005

Page 7of 71

tcl, c++, msoft products. vs python/ruby/scheme.)

networking affect: non-trivial fixed cost to getting in, want
to be able to talk to other people.

* So can we come up with a better example of Worse is Better?
(1. The Y2K leap year problem may be suitable. To recap, you arc
supposed 1o have a leap year when the year number is divisible by
4, but skip those years that are divisible by 100, but don't skip
the Jeap year if it is divisible by 400. Thus 2000 *is* a leap

year.

The "worse is better” school says that we just calculate the year
mod 4, and if the result is zero we have a leap year. This
calculation gives the right answer from the dawn of computing
through 2099 and after four years of field expericnce the
implementation is unlikely to have any bugs in it.

The "do it right” school says that we do a bunch of extra
arithmetic to check for divisible by 100 and divisible by 400,
with various conditionals to decide which case we are presented
with. Some of this code will be exercised for the first time ever
at the end of this month, at which time some, but not necessarily
all, of the remaining coding bugs will cmerge. So "worse is
better” seems to have an identifiable advantage, at lcast fora
century or $0.)

The argument is ancvolnlwnmy onc viruses l.lnl spread quickly and arc
pe! . if they will

good drives out excellent, the most popular is the least good

[according to gabricl]

characteristics:

1. impl should be fast.

2. should be small.

3. should interoperate with the programs people use

4. should be bug free, and if that means fewer features so be it.
5. use few abstractions. (abstraction = page faults)

implication: far better to have an underfeatured product that is
rock solid, l'asl and small than one that covers what am:xpen would
consider p [so what is mi model?]

benefits

- less development time: out carly, adopted as defacto standard
- can run on smallcst computers; probably easy to port.

- pressure (o improve over time will acquire the right feature ~
thos the customers/users want rather than those the develops

10/23/2005

Page60f 71

windows limix (well, sort of)
unix nualtics ~— but unix is much more clegant.

argument is dated: we have windows (worst is best) vs unix (arguably
the right thing)

in my mind, the most useful thing about this is to make pragmatic,
expedient choices: cut comers initially, get something out, do
the parts that matter righ.

the intersection effect: large set of poeple, have to appeal, number of
things is quite small.

music, tv, books.

japanese cars: initially cheap, badly made, wimpy. but took over from
more fancy "right thing" ones (compared to BMW, porche, say)

icity not the is-better — use it to
give youxscll‘ a lead time; works well for industry standard setters.

c++, modula3, eiffel, smalltalk, CLOS

[java seems reasonable]

key things:
1. this class is mainly about discussion. if i have to listen
to some guy talk for 50 minutes, i start zoning out after 10
and then start skipping classes. can't really leam either,
just passive. going to try to make it much more interactive,
which is a lot of work for us.

2. going to be an experiment to turn a large class into discussion,

so we're going to have to be experimenting with what works and what
does not. the class will roughtly be 60% from tests: you take 3

and pick the highest two. 40% will be everything else, which will
include class participation, pop quizes and possibly pop presentations.

sitn students don't have to worty, it's harder to participaic so we'll
Jjust have you write

s0: everyday what should you do? read the paper for the next class
at least twice closely. make notes oa its structure, what the main
points are, try to think of cxamples, counter examples, whether you
believe it, what is cool, what is broken.

(In general, things that really succeed scem to be ugly. perl,

10/23/2005

Page 8 of 71

thik they should have.

path of acceptance: act like a virus, providing functionality with
minimal acceptance cost. can be improved and is small and
simple enough 1o do so (nice point: small simiple = much much
easicr to modify in response to feedback.)

small simple = quick to build, cheap 1o build, easy to incorporate
feedback, customization (feature of early unix)

the acceptance model for the right thing is that it comes late o
market but is so wonderful it is accepted. has to run on every
platform right away or quickly. can happen; unlikely.

right thing based on the philosphy of lctting the experts do their
expert thing all the way til the cnd until the users get their
hands on it [key point about feedback

incremental releasess: can charge for each, will be a smaller steop,
with less investment, less time, more feedback: more of the "right
thing" from the users point of view (perhaps — can always correct
if noty

key idea: identify the true value of what you bring to market,
test ideas in small context, imporve in participatory way, and
them package in the elast risky way

most popular thing = mediocre. might not be anymore more deep.
in some sense, successfiul will get ugly: will have many demands,
will likely adapt to them (success), get more random entrpy.

why earliest adopted so good? 1Billion people speak english, 10
speak esperanto. which would you probably leam?

key: something is better than nothing.

when counter examples?
qsort: simple, clean, clegant. much of mathematics is like that.
clegant at least, if complex. engineering has costs.

accessible. this is the main thing? if it's out there its
accessible. if it's ported to many places. if ubiquitous.

the more accessbile, the more potential consumer base, and the
stronger the final networking effect.

10/23/2005

Page9of 71

Therac notes.

e xw e nn

Who are these authors? Bias?
“softwarc cng, safety engincering, and gov't and user standards"
as a solution to the problem.

[From Saltzer]

So how do these Therac things work?
photon
turntable position: electron therapy (x-ray) ficld-light
mode mode mode
beam energy: 5-25 MEV 25MEV 0
beam current: low high 0
beam modifiers: magnets flattener none

1fyou somehow get the beamn current set to high at the same time that
the tumtable is positioned with magnets rather than with the
flattener, you have set the stage for a disaster, with a high X-ray
beam current delivered directly to the patient, rather than being
atlenuated by a factor of 1000 or more. Another way to kill a patient
is to turn the beam on with the turntable in ficld-light mode.

An interlock is needed. The hardware interlocks of the Therac-20 were
replaced with software interfocks. What is a software interlock,
anyway?

(The "software interlock” is just a boolean flag for which a non-zero
value indicates that there is reason (o believe that the turntable
position should be verified for consistency with the beam setiing,)

What are the actual details of the two race conditions?

Heisenbugs vs Bobr bugs:

Bohr:

+ always happen so casy to track down

- always happen so cannot use duplication or reset 1o

1072312005

Page 11of 71

range (p24)

- wrong display: "no dose™: when it actually had. (p23)

- 10 frequent ions that did not seem 1o have
any serious side-effects. (p23) “insensitive” to machine
malfunctions (p24) commonplace. the texas operator was used
to machine stopping or delaying treatment.

- texas: video display unplugged, audio broken, so couldn't
hear patient (screaming). got second overdose.

- users told: "so many safety mechanisms that virtually
impossible to overdose” (p 24)

~dual mode machine so could mix modes (sec table).

- substituted software checks rather than hardware interlocks.

- id things like "imp by 5 orders of
which lets us infer they are idiots or evil

- magic constants (suspend 5 times before you had to do system
reset). reduced to 3 on (26)

- refusal to install potentiometer (26)

~Jack of il i ion. i ks labeled as d:

- lying/mistaken: claimed no other incidents when there had been. (27)
texas said no other incidents ut nust have known of the hamilton
incident.

- software rense, but misguided, since interlocks removed.

look back and therac-20 had the same problems but was catching
them (21) replicated errors; therac 20 was interlocking (can

see when students use them with weird testing).

- general: letter did not say why it was so crucial to disable
up arrow key, or that it was really urgent (31) [Good!: FDA
said fix this!]

~ bad sign: continued push back against testing requests by
FDA (32)

- mentory limits would not permit andit trail (37) and that
uscrs could not get source code.

~ industry has been complacent because everything went well so
far (38)

10/23/2005

Page 10 0f 71

get around.

Heiscn:
- hard to track down
-+ can always retry, often won't happen,

“Things that fed to bad things, hid them, made them more difficult to
track down, encouraged, or caused them:

- Not entirely companies fault: therc were envij factors
incentives (o suppress information. For example, company X
and Y have the same error rate, but Y reports it all, and X
does not. FDA more likely to go afier Y, customers more likely
1o think it sucks, more Iawsuits even when its not at fault.

~written in PDP 11 assembly language! (p20)

~lack of documentation or spec (p20)

- concurent access to shared memory without real synchronization.
led to lots of cliched test-set race conditions (p21):

if(!x)

x=7,

- lack of mechanism in AECL to follow up reports of suspected
accidents.

~ patients get 10-100x more radiation than asked for; underdosing
also a problem, which means that people arc essentially untreated.

- during knnestonc incident, printout feature was
disabled, so no hard copy of treatment data (p23)

- regulations do not require health care inst to report accidents
(only manufactures). As a result, less than 1% reported (p23).
Problem fixed in 1990.

- Race conditions so could not replicate (p26) so could not really
track down.

- users did not learn promptly about accidents; usually had to figure
out from other users. (p23)

- opaque error messages (“h-till”, “malfunction 54") without any
indication that an crror was really dangerous. manual does not
explain or address them. or wrong: “dosc input 2" = too high or
100 low; then used to treat patients for the rest of the day!).

- no defensive checks 1o see if paramcters entered are out of

1072372005

Page 12 of 71

- did not report when something bad happened (which should have
been easy).

- slow system: took almost three years from incident (o stopage.

Good things that happened that led 1o checking:
- ST group meeting.

= conservative approach in fault tree analysis, and interlocks (36)

- eror had a physical manifestation: a reality check against
virtval claims,

~ turning off beam would not cause that much trouble; interlocks
can be

- after july 30th (est 13K-17K), fda was informed.

- yakima incident; good follow up by hospital physist. e.g.,
reaction to kemo ruled out because no stripes. heating blanket
ruled out because wire patiemn (x-rayed!) did not correspond
(p26)

=~ tyler texas physicist investigated aggressively.

- end to end checks

*
* Erascr Notes
*

*

How hard are these bugs to find and climinate? Potential problems:

a) Timing dependences may make the bug difficult to reproduce.
What is worse, the instrumentation people insert to help
them find bugs may change the timing in sucha way that the
bug never shows up.

b) The bug is usually caused by the unexpected interaction of
two loosely related picces of code that are often in
diffcrent modules. So the person debugging must understand the
module interactions and cannot reason about the
system one module at a time.

¢) The manifestation of the bug may occur long after the execution
of the code containing the bug.

d) The code that fails may be very far away from the code
containing the bug.

what is the definition of a race condition?
- what's a source of false positives/false negatives in theirs?
~what's a better definition?

10/23/2005

Page 13 0f 71

NOTE: if I acquire all Jocks before every load or store, and release
them after, will get no error, but protect against no races.

their mental model:
every memory location has the set of locks used

what is the granularity of shared state?
- word can have a lock (don't protect bytes or bits:
can produce falsc positives)

- each word has a lockset index associated with it.

what docs atom have fo do?
- instrument I k

- add/remove lock from current lockset.

- has to know if read/write lock.

- has to know which parameter is the lock

- allocation: initialize shadow memory (need to do data
segment at startup)

- insert a call to craser on every load and store.

calls malloc: what happens:
allocates shadow memory as big as the allocation.
puts it in the virgin state
sets the thread id to the cusrent thread (calls thread package)

atom puts in a call to this routine on every load store (hat is ot
off the stack pointer:

void compute_transition(lockset *ls, void *addr, int op) {
alpha has an 8K direct mapped cache -~ what is a really bad
value for offsct?
i=((unsigned)addr >> 2) + offset;

virgin has no previous accesses.
if s[i).state == virgin

s[i].state = exclusive

slil.s = thread_id.

only rd/wr from cur thread
clse if s|i].state == exclusive

if(s[i].ls == thread_id)

do nothing

else

if(write)

s[i] state = shared-modified;

clse

sli].state = shared;
si].Is = cur_ls;

10/23/2005

Page 150f 71

) Petal - no serious synchronization crrors.
d) Student programs - 10% of apparently working student programs
had synchronization errors.

lines locks locksets annots emrs
altavista
mhitpd: 5000lines 100 250 10 0
Ni2 20000 900 3600 90

vesta (cvs) 30K C++2670 10 1
petal 25K C 2
[statistics: minor]

ugrads 10%

These are isi free of sy ization errors. The
data suggest that Eraser might not be useful in making production

programs more reliable. Eraser might therefore be more appropriate
as a tool that would make it casier and faster to find synchronization
errors during program d It would be i ing to see

abug fix log for these server programs fo sec if they had significant
problems with synchronization errors during program development.

An alternate perspective is that developing thread-based programs
may not be that difficult for very good programmiers like the ones who
developed these servers, or that the servers themsclves do not use

ization in a very licated way, so it is straij to get

it right.
[false: memory reuse, private locks, benign races]
Different from the text:

*On page 398, it says that "A write access from a new thread changes the
state from Exclusive or Shared to the Shared-Modified state...” But figure 4
says that a write by any thread in the Shared state takes it to the
Shared-Modificd state. This is a contradiction. Which is right?

(Oops, a bug in the description. The figure is right. Looking at the later
description of the implementation, any write will take it to

shared-modified. Once it is shared it is ranning the lockset algorithm
without giving warnings, which means that the per-variable shadow area
contains the lockset pointer, so it can no longer be keeping track of the
thread number of the original writer. We can also reason from what it should
do. If anyone is wriling into a variable that at least one other thread has

been reading from, we have a possibility of a race, so we had better we
raising alerts if the locking protocol is violated. [a legalistic reading of

the text can claim that it is technically accurate; it is true that a write

10/23/2005

Page 14 of 71

clsc if s|i].state == shared
sli).Js = sli].Is intersect cur_ls;
if(read;

no error if goes to cmpty.
clsc
sli].state = shared-modificd;
clse if s|i].state == shared-modified
if(read)
si].Is = s[i).Is intersect all_locks_held;
else
si].ls = s[i].Is intersect all_write_locks_held;

shared-modificd && sfills = {})

modifications:

L. if removed lock not there, complain.

2. if added lock already there, complain

3. if we are going to go to empty, emit warning, but leave in
old lock tate.

what things do they gloss over?
-+ atom already blew it up by 2x code size i belicve.
+ granularity of protection 4bytes — if you could protect 1
byte, then 4x more.

add in annotation suppont?
- eraserignorcon/ofT:
do not report —- this means they should not refine
as well, otherwise it's not that useful.
- erasesreusc
reinitialize
- kA i k: have to say
what parameter is the lock (pass in address).

13) What does the experi ion say about appli

chamcteristics and the utility of the tool?

a) Altavista basically had no serious synchronization crrors.
There were false positives, but a small number of annotations
removed them all,

b) One bug fix in the Vesta cache server. The problem is related
to the interaction of a standard synchronization idiom for

ines witha i memory model and the

weak memory consistency model in the Alpha, My guess is that
when the code was written, it was not intended to run on machines
with weak memory consistency models, then was ported to the Alpha
without a recxamination. A common source of errors - see the Arianc
rocket failure.

10/23/2005

Page 16 of 71

access from a new thread in the Shared state does take it (o the
Shared-Modified state; they just didn't bother to mention that a write
access from the old thread in the Shared state also takes the variable to
the Shared-Modified state. Under that interpretation the sin is that the
authors forgot to mention onc important case.])

* have them Jist all the false positives and false negatives that craser
gets.

why sem not a race? forces sequential execution:

Xt
v(sem);
plsem);
Xt

is the lockset a per-thread data structure? docs it need to be?

start with:
How hard are these bugs to find and climinate? Potential problems:
a) Timing dependences may make the bug difficult to reproduce.
What is worse, the instrumentation people insert to help
them find bugs may change the timing in such a way that the
bug never shows up.

[used to hate runing on a faster machine. different
speeds; also different mem consistency models.]
insert a printf, it disappears.
b) The bug is usually caused by the unexpected interaction of
two looscly related pieces of code that are often in
different modules. So the person debugging must understand the
module interactions and cannot reason about the
system onc module at a time.
[violate modularity: have to look at all critical
sections
lock();
X+
unlock(l);
x is behaving strangely: can i just look here?
no i have 1o expand the cllipses.
]

©) The manifestation of the bug may occur long after the execution
of the code containing the bug.

10/23/2005

Page 17 of 71

d) The code that fails may be very far away from the code
containing the bug.

What was the scope of the tool?

a) Threads that synchronize using only mutual exclusion locks
(no condition variables).

b) Bugs that can be detected based on dynamic execution. So
if there is 2 bug in a pant of the program that is not
executed, bug will not show up in that run.

¢) Shared variables are cither heap or global variables accessed
by multiple threads.

d) If the puls in sy ization, the
is assumed to be correct.

4) Basic ion: the has mentally iated cach
picce of data with a lock, and a correct program will hold that
lock during every access 1o that picce of data.

5) What is the basic problem the Lockset algorithm addresses?
Determining the association of locks and data.

How does it solve this problem?
It dynamically construcis the set of locks that can be associated
with each accessed memory location. This is computed as the
intersection over all aceesses (o that memory location of the locks
that the program holds when it performs the access.

How does a sy nchronization error show up?
1f a lock sct ever becomes empty, a synchronization ervor is
reported. Note that the crror itself does NOT have to occur in the
program execution - just the possibility of an error.

13) What does the i ion say about

characteristics and the utility of the (ool"

a) Altavista basically had no serious synchronization errors.
There were false positives, but a small number of annotations
removed them all.

b) One bug fix in the Vesta cache server. The problem is retated
to the interaction of a standard synchronization idiom for

ines with a memory model and the

weak memory consistency model in the Alpha. My guess is that
when the code was writien, it was not intended to run on machines
with weak memory consistency models, then was ported to the Alpha
without a recxamination. A comumon source of errors - see the Arianc
rocket failure.

¢) Petal - no serious synchronization crrors.

10/23/2005

Page 19 0f 71

shared-modified. Once it is shared it is running the locksct algorithm
without giving wamings, which means that the per-variable shadow area
contains the lockset pointer, so it can no longer be keeping track of the
thread number of the original writer. We can also reason from what it should
do. If anyonc is writing into a variable that at least one other thread has
been reading from, we have a possibility of a race, so we had better we
raising alerts if the locking protocol is violated. [a legalistic reading of
the text can claim that it is technically accurate: it is true that a write
access from a new thread in the Shared state does take it to the
Shared-Modified state; they just didn't bother to mention that a write
access from the old thread in the Shared state also takes the variable to
the Shared-Modified state. Under that interpretation the sin is that the
authors forgot to mention one itmportant case.})

*Show me an example in which we get a race if only one thread ever writes
to the shared variable.

(

thread | thread 2
x = 10 (initialization)

.ncqmrc(\lod\)

ifx>$§ x=2
v =x*3;

clse
¥=0,

release(xlock);

)
[don't get this]

*In section 3.4, it says that Eraser would have trouble with semaphores
because they arc not "owned". This takes us back to the carlier question:
Doces Erascr really depend on ownership?

(The state diagram of figure 4 has arcs labeled “first thread” and "new
throad”, so it certainly needs to know who is setting a lock. But presumably
Emscricould find that out by looking in some currentA thread system
variable. And it is certainly truc that a locking protoco! in which one

thread acquires a lock and another thread releases it is going to be hard to
debug. But it doesn't scem that Eraser would give different answers if the
discipline of only the owner can release a lock is abandoned.)

10) How accurate is Eraser?
a) Falsc negatives:
1) Dynamic initialization races that don't show up in the execution.
2) Exrors in unexecuted pieces of code.
3) Dynamic lock addressing that may be correct in some runs

10/23/2005

Page 18 of 71

d) Student programs - 10% of apparently working student programs
had synchronization errors.

15) It is interesting to compare Erscr to another tool with similar
characteristics, Purify, Purify is designed to catch memory
errors (dangling references, memory leaks) in C programs.

It has a lot of similarities to Eraser:

a) Uses binary rewriting,

b) Uses a dynamic approach to catching errors, which means it
misses errors that are not exposed in the instrumented exccution.

¢) Designed to calch a very nasty class of bugs that cause
programs (o fail in mysterious ways.

d) A safe programming language like ML would climinate the
crrors that Purify was designed to catch, Analogy with
monitors: ML and other safe languages did not catch on,
probably in part because the safety was too constraining. It
prevented programmers from doing useful things like writing
generating a write 10 a specific memory address or writing
a general memory allocator.
of Java, which is a safe language.

Purify was a commercially successful product, which illustrates
the importance of memory bugs in C programs.

16) Eraser illustrates several recurring areas of tension in

programming tools:

) Static versus dynamic error checking

b) Checking an unsafe language (with potential false ncgatives)
as opposed to using a language whose model of computation
eliminates the potential for errors to occur.

<) Doing analysis/instrumentation at the assembly level (this is
getting increasingly popular) as opposed 1o the source language level.

KEY:

*Why the claborate state diagram of figure 4 (page 398). Why not just use
the first version of the lockset algorithm described on page 396?

(Because not every vaniable is both shared and modified, and it is only
shared-modified variables that can be the source of races. So the state
diagram shows a way discovering which variables are actually
shared-modified)

*On page 398, it says that *A write access from a new thread changes the
state from Exclusive or Shared to the Shared-Modified state..." But figure 4
says that a wrile by any thread in the Shared state takes it to the
Shared-Modified state. This is a contradiction. Which is right?

(Oops. a bug in the description. The figure is right. Looking at the later
description of the implementation, any write will take it to

10/23/2005

Page 20 0f 71

but incorrect in others.
b) False Positives:
1) Phased

that don't use sy ization for data
that is read-only in a given phase.
2) Data that goes through an application-specific memory allocator
and uses a different lock second time around.
3) Hi ical locking
Holding a lock on a tree node gives the program the right
to modify any node in the subtree. Some programs may lock
the tree at dxmmm granularities.
4HA lock p that are not L by Eraser.
5) Sometimes the daia'Fe is benign:
a) Computation requires only approximate, not exact information.
So incrementing vaniables without synchronization is OK in
some circumstances as long as errors don't show up too often.
b) Single reads and writes to words of memory are atomic, If the
program only requires that level of atomicity, there is no
need for locking.
Annotation mechanism to turn off false positives.
c) N0| dcsngucd to handlc

2) Condition vnnablcs

11) The utility of Eraser depends on

a) Frequency of false positives - too frequent makes the tool
cumbersome 10 us¢.

b) Number of bugs that Eraser catches in practice, which depcnds
on the mimber of bugs that into
applications and on how many of them Eraser catches.

) Perceived severity of bugs that Emser catches.

d) The number of applications that meet the Eraser model of
synchronization.

All or these issucs dcpcnd on application charcteristics. So the

ly crucial to

whether the tool is useful or not.

*On page 392 the authors say "Only the owner of a Jock is allowed to
release it." Is this true of the lock isnplemented in chapter 3 (page 3-62)7

(The implementation of chapter 3 cenainly docsn't enfosce any such
restriction, though it would be casy to add it. Some locking systems enforce
those semantics, others don't.)

*Docs Eraser actually depend on this rule?
(It does need 1o know which thread is seiting a lock, in order to n more

advanced versions of the Jock-set algorithm. But we haven't gotten that far
yet, so let's bookmark that question.)

10/23/2005

Page 21 of 71

Mesa Notes.

PR

what can you say about paper?

=20 years ago we wtill read.

- lots of citations ot other people. schiarly. including papers
we will read

- turing award winner.

- beautifully written.

experience paper: no real numbers, doesn't introduce ideas, lays out
design decisions. the "hard evidence” is the least useful part of
the paper (experience in real systems, the numbers are mostly curios)

How environment different?
in the same address space.
cooperative.

not time sliced.

microcoded instructions
weird stack.

using the following code:

int sem;
condition non_zero;

PO

if(!sem)
wait(non_zcro);
sem—;

Y
senr+,
notify(non_zero);

will_block()
retumn sem 1= 0;

monitor:
- code + data + synch. written next to each other.

- data (sem) can only be modificd by monitor itself.

difference between monitor and module: 2 bytes of data
and 2 bytes of code. what is the code? what is the data?
(data is lock structure: seems to have 1 bit for a lock,
and 15 bits for the tail. so there can be 2715 bytes

1072372005

Page 23 of 71

can be joined, or detached.

contains: stack of frames, plus a 10 byte descriptor
(ProcessState: kept in a fixed located table; size determines
the maxinmum),

runs on a frame: frames seem to grow pretly weirdly. taken
from a heap, rather than pushed/popped. why is that?

* when are switched?

wait on lock on entry.

someone elsc becores higher priority

wait on condition.

possibly when you do a notify, waking up a higher
priority thread.

no timesliceing® means what? [entirely driven
by when process relinquishes, or makes another
guy have a higher priority.]

* woken up : how?

- notify (cond);

- timeout -- associated with each condition variable.
- abort[p]: pass process descriptor.

- broadcsat(cond): wake up cverone.

- can do arbitrary wakeups at arbitrary points and
they should work correctly.

* wait:
- releases lock of containing monitor.
- does not not release locks above.

* notify:
* does not release control of monitor lock

- puts notified thread, if any on ready queuc.

- hoare: switch immediately. know that whatever was being.
signalled is done.
mesa;: resume at some convenient time. nice feature: can
i 5 A

replace with which

“verification is actually made simpler and more
localized." p 11 why?

How does having style monitor ics actuall
help things? [Correct can always be woken up, even

10/23/2005

Page 22 of 71

of pointers),

= types of routines:

eniry: can be called from outside. acq/rel lock.
procedure -> entry adds 8 bytes of code.
monitorentry, monitorexit, not sure what the
other is...

internal: called only from inside. no acq/rel.

external: does not acquire lock. Why? are these just
speed hacks or is there some correctness? cannot
wait, cannot call internal routines.

guesses as (o why wait adds 12 bytes of code? probably
includes inline queue manipulation, including a check.

how many queues in this code?
- one for monitor lock, one for condition variable.

- all the ways (o get switched out in this code?

- return

- wait()

- another thread becomes higher priority: scheduler
switches us out at any point.

- generate an éxccp!ion that you handle: will not be
released if you return without handling exception!

what is a notify going to do mechanically? pull something
from the head, if anything. broadcast puts everyone on the
ready queue.

lock [can figure out from table]

struct {

lock;

queue *tail;

%

condition variable:

can be broadcast or notified.

struct {

queue *tail;

int timeout;

int wakeup-waiting-switch;

process
thread of control

10/23/2005

Page 24 of 71

‘when not necessary. |

* naked notify: outside of monitor. what is the problem?
what is an alternative?

what happens if we signal a higher priority process?
- sucks: put on ready queue, will preempt us,
will block on lock, will wake us back up.

* scheduler: premptive between priorities, fifo within.

what are all the queucs in the system?

one central ready queuey, and then one with each lock instance
(monitor lock, condition), and a fault queue. the first pointer

is to the *tail*. this lets you usc one cell of storage to add
processes to end, as well as cycling through

features of q7

- same priority, fast insertion, will be fifo
- high priority fast

- low priority fast

- take highest off queue fast

What is a monitor invariant?

- just the abstract data structure invariant, but protected
against concurrency.

examples:

- that the availablestorage = the actual bytes.
- that some freelist actually holds freed data.

how is mesa the Right Thing?
- check every instruction

- have run queue logic in *hardware* (microcode) not sure if
right thing or not.

bow New jersey?

- frequency of use <> put in hw rather than the most elegant partition
- wait scmantics: since it's a hint, what do they get out of it?

can do caorse conditoins.

- the fact that they disable interrupts!

10/23/2005

Page 25 of 71

- why not have recursive monitors? should preserve invariant.

- des not protect against dangling refs.

- the locks with clause: does not check that you do not modify
via aliasing. how could you check?

- don't worry too nuch about faimess: ina properly designed
system there shouldn't be too many processes waiting for a lock.

- fixed size processState array.

- non-recursive locks.

Tradeoffs between craser and mesa?
- craser can find when you forget to wrap shared state in monitor.

- monitor does sugar of acquisition and release cleanly.
- limits what you ¢an express — have to do monitor.

- completely prevents classes of errors instead of kind of
finding them.

- languade independent,

- prevents a larger class of rce conditions: eraser ensures that you
have same lock when you modify same variable. will not prevemt
you from doing something stupid. do these look the same from the
point of view of eraser? do they have the same semantics?

lock(l);
x=x+ I3

unlock(l):
lock(ly,

tmp
unlock(l);
Tock(l):
X=mp;
unlock(l);

- could make something an external that you really shouldn't.

How can you deadlock?

entry foo(int X)
if(x) foo():

entry foo() ~ entry bar()
bar(); foo(),

101232005

Page 27 of 71

Uncaught exceptions in forked procedure causes system (o go
to debugger.

Capriccio Notes.

- w

‘What's wrong with user-level threads?
[picture: many uthreads and one vCPU]
A blocking system call blocks all threads.
Why not use select() to avoid blocking?

disk read. open(). page fault.
Hanrd 1o run as many threads as CPUs,

What's wrong with kernel threads?
[picture: many uthreads, one vCPU for each]
Handles blocking system calls well.
10x-30x slower than user threads, due 1o kernel calls.
Which operations have 1o call into the kemnel?
Thread creation?
Thread context switch?
Waiting for a beld lock?
Waiting for a free lock? (maybe not...)
Releasing a lock?

What about multiplexing user threads on kemel threads?
‘This is what the paper mostly compares against.
Viewing kthreads not as the feature, but as hidden machincry.
Try to do most operations in user level: create, ctx switch, locks.
Kemel can't know which is the right uthread (ie kthread) to mn.
Kemel may pre-cmpt during a critical section.
Assuming user-level locks.
Kemel may not understand priorities of uthreads.
Bad 1o have fewer mnnable kihreads than CPUs:
Wasting CPU time.
This will happen when kthreads block in the kernel (page fault).
So spawn a few extm kihreads?
Bad to have more unnable kthreads than CPUs:
Scheduling/priority and pre-cmpt in critical section.
Also caused by multiple unrelated jobs competing for CPUs.
Summary: kthread *not* a virtual CPU!

ousteshout threads argument:
mendel’s advisor. was a prof at berkeley. did sprite, systems
guy. then did tcl and quit.

this was an invited talk. you invitc someone famous. they talk
for about an hour. many talks aren't so good. the good oncs

10/23/2005

cntry foo() entry bar()
bar(); wait(c).

catry foo() entry bar()
bax(); throw invalid;

fork foo():
fork foo();

what happens? will go to debugger. holds lock still held. second
one will deadlock. why did they do this? modularity! othenwise retun
with monitor invariant all screwed up.

why don't they release the Jock?
violates modularity: don't know if the person you are calling
could call you.

questions:
what is a monitor invarient?

Your ex-140 partner loudly declares that if the semantics of the
**wakeup-waiting switch” is good for naked notifies, it must be
good for normal notifics, which should be replaced with them. Can you
do this substitution and preserve s? (List any i
you must make.)

‘The replacement should have no effect for well-formed mesa
programs that use a while loop to recheck their wait condition.
Such programs will work (albeit possibly more slowly) cven in the
presence of completely random wakeups.

Would a Mesa programmer have any use for a Mesa version of Eraser?
To detect deadlock. to detect when you should be using a monitor.

Give two examples where Mesa makes a " New Jersey* style decision.
‘Wakeup semantics. No recursive monitors. *"Locks with clause”
object not protected from modification. Does not worry much

about faimess on locks "*in a properly designed system should

not be many processes waiting for locks."

Explain from the Mesa paper: **...[while] any procedure
suitable for forking can be called sequentially. the converse is not
true”

tend to be about experience. you might not know from text but
this was probably the most widely cited (influential?) invited
alk in systems.

noain claim: most things, events better.

what is ancvent? (a closure)
pointer to code.

values for parameters.

values for other statc.

foo(a,b,c) becomes something like:
struct {

void (p)T,T.T);
T arg[MAXARGS];
je

cargll] =b;
carg2}=c:

threads =

* pre-emptive scheduling of different entities.
synchronize.

monitors = low concurrency

fine-grain = major complexity

deadlocks.

event =

* non-preemptive.

[is orthongonal though: can change onc or the other
and the bulk of the code isn't modified]

one exccution stream,

register callbacks for when cvent happens

event loop waits for events, invokes handler (duality paper)
generally short lived.

GUI: window cvents
seryers: onc handler for cach message type.
event driven i/o for overlap.

probles:

- long running handlers = non-responsive.
[cooperative problem: have to wait for yeild.)
- local state across events painful

[bave to manuatly wrap up: or you could have
scheme support.]

Page 26 of 71

10/23/2005

Page 28 0of 71

10/23/2005

Page 29 of 71

- 00 concurrel
|ean of course combine, but then lose cooperative
which capriccio techniques still work? need to
do M:N.J

- event /o not always well supported. (and you
have to know when could happen)

[have to put in wrappers. need async. but you
can use kernel threads! just bave a helper issue
the request]

pros:
+dcbuggging only related to cvent order, not schecduling

order of threads
easier problems: slow vs corrupted mem.

+ minimize concurrency

+ faster on single CPU (no locking, no context switching)
+ more portable: just rip stack. no context switching code.

threads:
long running handlers (processes!)
true concurrency

what does he mean about high-end servers?
[just means multi-processor, and you want to use them]

what are thread good at?
automatic stack management
what are events good at?
cooperative.

easy to combine both.

usenix fibers. nice paper. might be too simple for class however, unless
we throw in the hotos and ousterhout talk.

main point:
can seperate manual stack management from auto,
pre-cmptive from non-preemptive. sweet spot:

non-preemptive threads.

task perative or pi iptive. special case: serial
task management which runs tasks to completion before

doing the next one.

no conflict of shared state, no onc can violate invariants.
doesn't work so well when task must wait for long running

10/23/2005

Page 31 of 71

big problem: gain in reasoning about concurrency cannot be
ithout manual stack

general thing about paper:
sosp: 21 papers out of 130 or so.

was a late accepl. the vote around the table was 4 against and
most people ok with it.

want papers that are really good or really bad. most in the middle.

alot of things show that they really do use it (the points about
GNU libc 2.2 carlicr working but 2.3 bypassing syscall stubs,
the fact that you can just st env vars to do things).

capriccio args:
cvents:
+i ive sync from i
+ lower overbead for stale management (no large stack)
+ better scheduling and information
+ more flexible control flow (not that compelling)

cheap sync: antifact of cooperative.
tradeofT for stack size.

user-threads vs kermel-threads
events vs threads

1: scales to 100,000 threads (does it?)

2. efficient stack (using a compiler to thread together)
using linked stacks (ala mesa).

basic idea: check how close to stack overflow, allocate
new one if so. don't put in so many checks using
compiler.

3. resource aware-scheduling. use control flow to make scheduling
decision: is a messy annotation for (he st of things you might
us¢ next.

this is cute. i like it. but not really compellingly

demonstrated. robert will probably have work in his

thesis.

2&3 still useful if M:N.

cooperative: boolean vars to do locks.
lock(lock)

10/23/2005

Page 30 of 71
io or guys need you (o
cooperative: yicld at well defined points, typically only
for /O ops. main problem: use global state. yield. use
global state again.
large invarients are easy: can't really do with
lockis since suck.
event across i/o: single conceptual task broken into
several language procedures. causcs a lot of trouble
as software evolves.
thread = p; plive, ic stack
event = coopemtive, manual stack
Tip into event handlers
save and restore state across them.
package up a continutation to go from EI to E2.
when debugging E2 only shows event loop in back trace,
not that it came from E1.
manually do things handled by compiler in thread:
two or more language functions for one conceptual
function. variables once managed on stack must be
jammed and pulled out of heap structures. debugging
stack sucks.
if foo() changes 1o blocking, then all functions above it in call
graph may have to be changed to pass continuations.
*do an example. make it very clear.
cooperative: view program as one enormous monitor that is
released and held at yield (wait()) points.
in cooperative, they make the point that yeilds arc dangerous
because invisible, urchecked property of function.
what's the problem?
* yicld and come back: state changed. have to know that
you are leaving the monitor since it will releasc the
lock!
stack management: manual or automatic.
i/o response management
conflict management
data partitioning
cooperative task management = switch when i say to.
10/23/2005
Page 32 0f 71
while(lock == 1)
yield();
locked = 1;
table I:
big difference: kemel vs user,
why create faster than linuxthreads?
slower than nptl?
[i don't understand how a userlevel thread package
can possibly be slower than kernel level. should be 10x.]
they say slowdown for stack allocation, but you can
casily make this almost free using a good allocator.
they already have a custom one since they talk about
doing LRU.
context switching? just saves and restores regs right?
[also goes across the kemel, has to decide what (o do next
they say reduced kemel crossings and scheduling])
why the big difference in mutex?
[contended = what? i believe it's = you have to block]
why don't they give us the cost of a contended mutex?
is this the good ordering? what can you do for the first time you
switch to a thread? last time you switch out?
break into groups: figure out the point of the cxperiment, whether
this is a good idca, and interesting things about the lines.
figurel: what's the point of experiment?
{do something parallel with dep ics and lots of
threads and see how things go]
is there a single shared buffer? (i think so).
is the buffer infinite size?
how do you rate limit producers?
[equal number + consumer does work, so will fill up if
finite. do you block them all immediately? do they
explicitly go to sleep?]
how long can the consumers loop?
just say random.
1072372005

Page 33 of 71

how is it balanced?
how are the threads interleaved?
[RR?}

[are these with optimizations? i believe so, othenwise its
1ot going to work out at all.}

perative:; zero ially. switch out, switch
back in, runs full speed. why does it go down after 1007
[they say its some sort of cache problem. which is what
you usually say when youdon't know what is going on.]

why plausible that its some sort of cache problem? probably does
some sort of RR which means that it iterates through all. by

1 the time it gets to the end it isn't in cache anymore (LRU +
cyclic access of data too large = worst case). but if this is

50 you'd expect fnrther drops.

why does linuxthreads and nptl both start out worse at 17

why does linux get much worse after 10?

why does nptl get much worse after 100? (100 * 2MB = 200MB.
probably not memoyy problem)

what happens if pre-cmptive? lock contention kills things.

if thread holds lock and gets switched out throughput gets
hammered. i don't think this can happen to capricio: no pre-cmpt
point between lock acquisition and release. this is another

win of cooperative: preciscly control when you switch out.

some points really suck. various points create scheduling
dependencies. always want to switch out with zero if possible,

really bad experimental writing.
why slower at beginning?
locks]

why slower at end?
[sleep with lock held]

figure 2: how does this measure network performance?
[pipes not sockets. on one machine i beleive]

what is the point of mostly idle links? (measures if you go
to sleep when nothing. and wake up when something)o

strange: why does it go *up® after the first? (is it over
network?)

10/23/2005

Page 350f 71

tradeofT:

check on each call?

+ tightest bound

- high overhead

never check?

+ fastest

= Waslc space: worst casc.

algorithm:
DFS to find backedges.
(basic idea: mark cach node,

mark_backedge
if(n.mark)

nbackedge = I;

returm;

nmark = 1;

foreach n.suce
mark_backedge(n.succ);

add C at any callsite that is a backedge.o

then: break down furtber bounds to £it within some threshold.
where to insert?

come in from the leaves, if the current node +

longest path > threshold insert checkpoint here.

path terminates by leaf or checkpoint.

will you always fit in bound?
what about code you don't have the source for?
printf may use 8K.

annotations. always switch to a large stack.
if doesn't block that much, then ok.

what about function pointer?

worst case?
- CPU overhead: singe call chain

exactly 0 savings. (actually, that's not completely
true: have a bit when you return could give to someone
clse)

- wasted space: two calls: one big (to make worsc case)
the other small.

what's guard pages?

usual technique: allocate 8K then mark page after as
unreferencable. or several pages (since you could
allocate array and then reference too far).

1072372005

Page 34 of 71

what does cpoll do?
what docs poll do?

why doces C- suck at first?

[more epoll_wait requests. |

why is npl better?

|kernel knows already who can run.}

figure 3: overapping i/o requests.

whta's going to happen to a user level thread package?
[hammered because of blocking)

why doces performance go up?

fpick up more requests as you surf around the disk.
can sometimes consolidate since there js a lot of
locality from triple/double/single blocks+meta)

figure 4: as miss rate increases, what happens to performance?
why does cap suck?
[its aio interface: makes it *2x* slower. this is
crazy. trick: check before issue request. since
in cache will not need to.
linuxthreads = claim it is a bug. next best thing after caching.

why does everything converge to same?
[can't get any faster, and the overheads must be huge]

linked stack:

compiler stack depth: start from routine passed to thread_create
and allocate maximum stack. two problems: worst casc,
allocated all the time. and doesn't handle recursion.

why need checkpoint atall? don't we know the amount of space
consumed? (for multiple callers: the grph in figure) when
could you elminate checkpoints and just link? (one caller)

basic idea:
put in checkpoints .1 the stack allocated at C1 is
the maximum stack that could be needed by (1) the first

checkpoint reached on any path or, if the cfg terminates
(2) the leaf.

split callgraph by shooting it with these.

have to do on each recursive.

10/23/2005

Page 36 of 71

reuse parts of stack across threads in lifo, which helps
cache.

can have subpage size chunks (eliminate intemal frag)

their experiment for 100,000 threads: call function with
IMB stack that cach thread touches. why theirs works well?
all threads share the stack, since allocated and deallocated
on cachcall. (cooperative - wher is the insert?)

apache:

-1% linked stack from C

.5% linked to call external function
10% C determined not needed.
89% unaffected.

“larger path lengths require fewer checkpoints but more
stack linking"

scheduling:

what runs when. important?

- how far from completion.

- which stages arc bottlcnecks.

are the points ones that blocked or ones that *could* block?
prose kind of confusing. have to open before close, which
doesn't match graph. on the other band they are pretty sloppy.

node: blocking point. all blocked threads at one of these nodes.
edge: all subsequent blocking points.

[why differentiate callchain?)

average time for edge
average time at node (weighted average of outoing edges)

average resource usage at edge
ayerage resource usage at node
CPU. memory and file descriptors,

have a sclection of things you can run, would want to do the
oncs that release resources under contention.

preferentially runs tasks close to finishing, since these arc
the ones that release resources.

* blocking latency: want to shove tasks through as soon as possible
since they have to get throngh a given number of block points.

10/23/2005

Page 37 of 71

why "when resource usage is low we want to preferentially schedule
nodes that consume that resource, under the assumption that that
will increasc throughput"?

have to block 10 times: want to start as soon as possible.

maximum freedom: can do it now, better do it now. later

might be contended.

they also run if it increases usage when the thing is low. this
seems a bit weird.

what would cause all this to break? if average meaningless since
tasks do whatever.

they say Iiard to measure thrashing. scems pretty casy if you
look for a jump in the cost of cach node. work out low average,
then if it goes high, can switch.

limit buffer cache to 200MB. why might unlimiting hurt their relative
numbers? (compared to pre-empt. which handles pf. which isn't going
to happen so much if you have 1.800MB for VM).

served 3.2GB of static content

what is the overhead of this blocking graph stuff?
30% for knot.
8% for apache.

what the hell is going on? why is it 5o expensive to figure out
what edge you care about? why dont you just have a pointer back
to the parent edge? don't all things that not block collapse to
asingle line? [they use the callchain — i don't see why they

don't just haave a pointer back. they should show it matters.]

figure 9: not very compelling. for < 100 clients no big deal. for
greater get a bit more speed. but this is for apache, which is
really slow.,

assume we use cooperative threads rather than outerhouts, what changes?
- ot preemptive.
- one cpu.
- no sync necessarily: get big critical section except when yield.
could put in can_yield().
- no locks so no circular locking dependencics,
- can yicld in random places; but in cvents, could have code that
runs after the blocking occurs

how similar to events?

- long running makes
10/23/2005
Page 39 of 71
- tiny memory (250K to 8SMB)
- family of computers: range of 32x in memory size
- slow hardware (one disk) to fast (multiple)
- 32-bit address space (pretty big for then) cliche is that
the hardest thing to overcome is insufficient address space
size (c.f. x86 seg register hack)
- sort of rid/minroring idea: have a
swap device. no one does this anymore, would use
two disks for more than that (stripe across both)
basic layout:
- (similar to mips): 32bit, high 2GB for sys, low 2GB for user.
- 08 aliased into each process address space: one pt for
it, never switched.
fixed vector at the beginning (poor man's dyanmic linking)
used 1o allow relocation: fix index and the actual location
can move around,
- zeroth page not mapped - helps both user and system
- address space supposed to be a few contiguous ranges:
- map with a simple lincar array.
- these arrays are mapped with a system page table.
- can be paged out if their mappings are all paged.
- P1 bolds stacks for os to use.
- contig physical memory.
pte structure (32bits):
30:27 25:21
B ———
[viprotjm| os] physical frame number |
B S
3126 20:0
valid bit =0, then 26:0 can be used by os. would typically
stuff a disk address in there.
small page size: what is the tradeoff?
+ low internal frag (good for low memory)
+ more precise modification knowlege (less likely have to write)
+ though not really discussed: the minimum fetch unit smaller,
which can help.
10/23/2005

Page 38 of 71

- 110 CONCUITEnCy
+ maintain local state
what is the delta between threads and

- mesa style: never interrupted
-one cpu.

-+ essentially what this transforms to in mesa terms would
be running with interrupt enable/disable as concurrency
control.

they said bad. what is the reason it works ok?

implications:
- large critical section, except when you yield.
- locking fast (just a var)
- no locking deps.
- unlike events: don't have to manually switch contexts.

what do they say is main problem with cooperative?

implicit yield. we already saw this in lampson. what would this
be called there? if you did a wait and all monitors above you
released lock.

'VMS notes

I I

Jevy: advisor of anderson and bershad (already read a few of their
papers). only prof at a reputable school without a phd.

age shows:

- memory is about 125x larger now. (2GB vs SMB —

1:250 and this is for

the high cnd system, so easily 1:1000)

- memory much more sparse.

- pages about 8x larger

- the advertiscment is hilarious.

- b still about the same size!

10/23/2005

Page 40 of 71

~ can still cluster and get benefits of larger pages; but i guess
its natural to not do so as consistently.

- need more PTEs

- need more tb entrics.

max amount of physical memory? 2°(21+9) = 1GB.

why pot put the physical page number at the top of virtual address?
| Spn | ?)ﬂ‘scl |

what problem does this cause if you usually touch stuff near you?

page tables fixed in number:

- each page table defined by two hw registers: [base reg, lenght reg)
three pts in total:

- PO, P1 registers hold virtual addresses ; switched on cswitch.

- system page table.

cswiich: change P1&PO pt registers, flush user portion of tib.

paging goals:
1. isolation: one crazed process does not hurt the others (that
much: "where can it still cause problems?" - turnover.)

how solved?
- isolate each process has a resident set + resident
set limit.
-when you reach your limit, every request causes you to
give up a page.

- when there isn't enough memory, an entire process
gets swapped out.

argues: allows quick decision (take off head, but do have
1o search).

*nice feature: if systcm not under memory pressure
then 0 overhead: nothing gets put on or taken off.

the free list: how long stays on a function of list size +
fault rate.

what if resident set limit too high?
don't reclaim pages, sit there dead, isolated.

10/23/2005

Page 41 of 71

100 low?
reclaim pages often, will not have any perfonnance
isolation. have cost of movement.

as freelist + modified list goes to
0 replacement goes to FIFO
size of memory goes to LRU! why bad? (tumover)

what is the overhead?
200usec per reclaimation
10ms if you take and flush something.

cando 50 mistakes of moving page back and forth
before equals the cost of a page fault.

as you make list larger, minimize charice of pfs, but increase
the number of fanlts + recoveries.

how docs it compared to clock?
- you have to reference between the time you put it on the
list and it gets to the head.

- clock: you have to reference before you get through all
memory

if only one process: one long fifo stream, but
do I once it gels kicked out. ina sense,

they want non-locality: once on list will not
reference that much, so Iru not expensive. the
Tist actively being used, will be referenced all
the time, so don't want to do Iru. cute.

- i think they are essentially the same if the freclist was
the size of memory.

not sure what happens to medified pages after written:
put at front of freclist or cnd? survives longer if
latter. weird discontinuitics.

freelist + resident set of one process acts pretty close
to Iwo-handed clock. bit more complex with multiple oncs
though.

tradeofl:
- cach mistake:
best case: list insertion, search, removal (200 usec)
worst: flushed page = ~10ms.

- correct decision: saves a page fault (10ms)

10/2322005

Page 43 of 71

high-low too small?: {above)
high-low t00 big? (tic up disk for a long time; massive dip
in performance)

good thing about deferred writes:

1. absorb modifications

2. cluster contiguous pages together

3. write a bunch al once

4. can retum back to user without any work (if modified
likely modified again in the future)

(1) & (2) & (3) all the same in hardware cache (why
you have cache blocks rather than bytes)

cssentially have two-level paging: one at the granularity of
pages, (he other at the granularity of processes.

4. the time by ing page lists

- don't use reference bits (morally the same)
- use fifo + second chance: no search, except on page
fault (do they use a hash table?)

pager mns on page fault. can get from:

1. swap file

2. a.oul

3. demand 0

4. freelist, modified list

5. a mapped in file (theyseem to suppost mmap)

OS is paged: difficulty?

- fetch and eviction code can never be paged. neither can anything
they call (printf, find-first-bit, linked list routines,
device drivers, timer code, lock code. ...)

segments: link everything for non-paged, put contig. then
link all pagable. as long as you get the roots right you'll
be ok.

- hold a lock: have (o be very casefut with load/stores. at the
least you hold it for milliseconds. il you have a big kemnel
lock have no protection,

basic theme: large fixed cost (0 moving liead + incrmeental cost of
writes. many file systems do the same thing (LFS,
hardware caches to (don't fetch byte, rather get more)

10/23/2005

Page 42 0f 71

some set of processes make nominal progress: swapper pushes
out processes that don't it so that highest priorily stay
resident (not clear if priority fluctuates with eviction as in
unix) not loaded unless enough physical memory for whole
resident set.

this helps reduce disk workload (less paging) and

sort of limits the effects of whacked out processes.

2. demand paging cost

- they cluster pages together and read them in en masse
(how large cluster?)

- similar: swap in entire resident set.
3. increased disk workload

- minimize i/0’s by writing things out in large contiguous
chunks.

- also with the fetching (reduces secks & requests, but does
‘cost more in ters of bringing in memory)

- also by deferring writes can (1) absorb more and (2)
climinate them if the process exits.

seems to have io since no di ion of
allocating in contig physical memory (makes sense since
i had really isti o systems:

that this part gets down — design s free in a sense)

modify list: have a low-water mark & high-water. when reaches
high, blast out (high-low) pages. "why not write out

the entire list?” could have been stuff you just freed.

means no caching -- big spikes in how things perform.

two different tinie scales: how long been on.

when you flush. better to scperate

modify list has two thresholds:

high imit:
100 high?
bias against unmodified data
too low?
write out 100 few.

low limit:
too high?
wrile out too few (so reality: it's the delta)
too low?
no enough caching going on. big spikes.

1072372005

Page 44 of 71

all the places they do contig:
- a.oul: linker lays out, if not successive, then it goes
‘backwards (i think)
- swapping (lay everything oul contig & rewrite if any io
in progress)
- paging: writing out dirty pages is deferred and they are
ordered before

batching: when faulting in, when writing out.

missing things:
= no discussion of defrag.
- it's all english text: no formulas, real algorithms, cic. systems

is a bunch of obscrvations. no answer to: what is the best limit?
what is the best size?

- how do they pick which process to swap out? swap in?

discussion queestions:

1. how would you actually design the experiments?

2. what is a worst-casc (or very bad) workload for this system.
(compared to what though?)

- poor spatial locatlity so that clustering docs the
wrong thing

- fragmented disk so that you can't lay things out nicely.

- bad for all paging systems: bad locality in general,
one reference per page.

- reference one page per group covered by a page table
page (512/4 bytes = 128 pages per PT page)

- ah: cach process has 10MB, one needs 1 1MB, one needs
9MB>. performance will really suck,

experiment:
- saved 50 page faults (about 50%10ms = 500ms = half 3 sccond)
= no end 1o end performance
- 359 pages were sufficient for 4million references (1:10000 ratio)
[total size = 183K]

- gets better and better so why not make freelist be cven Jarger?
200uscc overhead + non-isolation.

10/23/2005

Page450f 71

way 1o look at this: one long FIFO list, but yon do LRU on
the free list segment of it. locality means less references to
it, so few operations.

really want to see the end-to-cnd time, plus the cost of doing LRU.

experiment table 1:

- half the faults handled.

- no idea how much memory

- 70x more read ops than writes (since can batch)
- read to write ratio about 4:1

- faults from modify and freelist sort of equal — why? does
this mean they arc the same size? docs modify last longer?

- total page faults is about 80K

- very few write operations compared to read: 7K to 117,
usually wrote out about 100 pages at once (.5 MB)

- total page faults should be the sum of
pages read + faults from free list + faults from modify list
+demand 0

butits not. get 79356.
* how would you hide things?

- tune until works
- drop things that don't look good.

Superpage notes

s r e e

first example of a modern experimental evaluation. varied every possible
parameter. typical of peter: solid, careful papers. not revolutionary

but interesting and you can stand on them. if you were going to build a
superpage system you would read this paper. just as with the mesa paper,
or the craser paper.

very common type of OS paper: some pretty simple idea, goodness measured
in terms of huge amount of typical imp:

10/23/2005

Page470f 71

1. where to place: step through whre to place things?
2. when to coalese: can form back into big one.
3. what to split: which space do we break down.

differences:

4. (different from malloc): when to move.
5. which physical you free

6. units very much larger.

similar lack of control over:
1. size

2. request stream order (not completely true: can suspend program).

3. the virtual addresses (mostly: can chose mmap, or the initial
place to map stack and such)

4. which/when virtual you free.

placement:
worst place to put one block?
[leave largest frec that you can: they sort of do this
using best fit strategy]

populations of two different sizes?
[split on ends: could scgregate memory [don't do]]

populations off a bunch of different sizes with correlated deaths?
[cluster together: all pages from same process [don't do]]
[their wired pages, scperale out: these cannot move at all}

if you look at it as similar to malloc and free you notice a bunch of
heuristics developed there that conld work here. you want to put things
of same size in same place (all same size po frag), you want to put things
that die at same time in sample place (c.g., bias alloc of all

stuff for same program in same place). they don' do cither.

in general: large unit allows us to satisfy the largest number
of different. don't split when a smaller one will do. try to free
up big chunks at once. in trouble when only small.

Do we care about the problem?
Figure 1 is our tragedy: log graph, with suckiness increasing
exponentially (100x over 10 years). this the the wrong end of
moore's law. overheads of 30-60%.

- physically indexed cache: what is the problem? cache *hits*

10/2372005

Page 46 of 71

by community: arch (1-3%), compilers (5%), OS (20% or more).

notice non-trend: still mostly english text, no formulas. just
measure more. so vms in this sense isn't much worse.

grail: achieve high and i for real and
ligible ion in ical cases.

cvaluated on real benchmarks

built in real system

funny case where hw evolves faster than sw: superpages out for over
adecade, but very little support in os. primary maps framebuffer
using one big superpage (maybe OS as well).

paper obsolete if hardware can (1) make big TLBs or (2) form superpages
out of non-contig pages cfficiently [fang et al]. if past=future then
they won't do (1) anytime soon. not sure about (2).

+ fundamental assumption: do no harm. should always be better, even
by sacrificing upside by taking less risks. where can be worse? (1)
general overhead, but they show not a problem; (2) paging decisions.
this is on place where it docs seem that they could be screwed.

a huge amount of carc is given to screw cases. you are almost
certain that if you use this, it will not blow up on some

workload out in the lab. bave no such warm fuzzies about the vms
stuff.

thing to keep in mind: just mapping integers (o integers.
vpn > ppn

most of the problems in the paper boil down to the fact that there is
no good way in general (o construct an arbitrary int->int function.
if we want to map arbitrary ints to ints, then we fundamentally have
to use a brute force table. ic.., O(n) space

quick OS proof: if its purcly random, then its not compressible and
we necd to record everything.

so the way we handle it is to induce structure (restrict flexibility)
so that we don't have to specify. the way we always do in OS is to
force consequtive vpns to go to consequtive ppns. segmentation,
pages (larger and larger more of this), supcrpage.

versus malloc and free

similar degrees of freedom:

10/23/2005

Page 48 of 71

can cause TLB *misses*. wild.

- s0 use a virtual cache. what sucks? (fTush, aliasing,
consistency) solve aliasing with hw or by forcing sw to
map so it conflicts. solve flush with asid.

- could have a two level TLB, but i don't know of anyone that
docs this. given how much space wasted on BTBs, not clear
you wouldn't want.

- plausible worst case access pattern? 1 reference per page.
which benchmark looks something like this?

mips? 64 *4K =256K! tiny.

our simple solution to make the TLB go farther: just increasc the
page size. problem is internal frag. so we allow increase of page
size across a set of ranges (fit it). sort of like scgmentation,

but much more restricted.

Alpha:

two tlbs, one instruction, one data. (1281+128D)*8K = 2MB. in their
case S00MB, so factor of 250. since multiGB. casily factors
of 1000s.

(why put vpn at the top of the virtual address?)

8K, 64K, 512K, 4MB, where va % 64K = 0 for 64K superpage, elc.
why is it aligned? [so that you can steal bits for the size without
nceding a larger tib.]

good:
+ larger coverage
bad:
artifacis:
- one ref bit
- one protection bit
- one modify bit
- aligned both at va and pa.

intrinsic:
- one reference makes whole thing refereneced. bad positive
correlation: laxger it is, more likely it is to happen,
more memory wasted.

- one write makes whole thing look modified. bad positive
corrclation: larger it is, more likely to happen, more cosily

10/2372005

Page 49 of 71

1o write to disk.
= hard to allocate in a good way.
~ costs more to write to disk (if you were more precise not bad?)
= less locality: pr that you usc byte b0 and bl decreases with
distance.

+bow much docs a TLB miss cost?
+how many do we have per page fault?

allocation (triggered on page fault)
= best: all of memory free
- worst: only | page frec or scattered.
[anytime contiguity important this is true: identical on disk]

basic tradeofY: greedy now or take long view. in both cases don't
know future so may be wrong.

= local view: want to put where it can grow the longest
- global view: don't want to waste

their heuristics:
1. leave as much free space as possible. (take from smallest

part)
2. don't prectude future.
3. don't be worse than nothing.

how much to allocate?
- if we knew future: would make cxactly as big as nceded.

allocates exactly onc base page, with the same aligniment as the
faulied page. but rescrve the following pages. reservation size

is the largest that is Iy by object.
will promote to when fully in (he i
have a non-binding reservation. free to take away, but will do
s0 in FIFO order.

how do you use up a reservation? promotes gradually: as soon
as extent fully populated goes to the page. this is an example
of the do no harm; works well in practice since often if you're
going to use, do so promptly (c.g.. an array initialization).

in case of aipha: promotion = replicating exact same
PTE to all reevent PTEs. TLB miss on any will bring
in the same entry.
what to do if doesn't fit? where does the reservation come from?

1. freclist.

1072312005

Page 51 0of 71

observe: populate denscly and carly.

demotion: (cvication) exit or lose page:
1. occurs on eviction. recursively breaks down to largest
smaller superpages.

2. under memory pressure: when deamon resets reference bit,
demotes superpage to base pages and repromotes back only
when all referenced. (anything else?)

3. first write to a clean supepage sbatters it. only have one
reference bit. so don't know what parts are in use,
50 break down into a base
page that holds the dirty one, and as large super pages as
possible for the rest.

4. change permissions on subsuperpage.

they constantly avoid doing worse than nothing. where could they
do worse than a system without superpages?
- overhead (but docsn't seem so high)
- page eviction decisions: demote fo get continuity, demote
closed file pages.

how does evication work?
(reebsd:
[- four lists: free, cache. clean, unmapped|]
four lists:
- free (not said) pages that conrespond to nothing.
- cache: clean and unmapped (file data).
- inactive: mapped into process but not referenced ina
while (dinty or clean)
- active: accessed receltly but may not have ref bit set

meIn pressure:
- moves clean inactive -> cache,
- pages out dirty inactive
- deactivates unreferenced pages from active list

modification: all clean pages backed by file moved to inactive
list as soon as all processes close file. these will only be
picked up by the coalescing deamon.
reservations use both cache and free pages. take free over cache.
deamon actived both under memory pressurc and when continuity low.

(allocation fails: deamon walks over inactive list, moving to cache
pages that will make continuity to satisfy request! don't move if

10/23/2005

Page 50 of 71

2. if cannot get a rescrvation, preempt an existing one.

sort reservation list by when you did a page allocation
(i.c.. allocate page. put at end): LRU = take from head,
o(l).

3. if no more space: could copy, could flush things out; they
trigger the coalescing deamon, (will talk about later).

rellocation:

1. can do because you know where pointer to relocated object
(page) is and so can update them (i.¢., modify page table).
cannot do this with C & malloc since you don't know pointers.

2. rellocation always interesting when you care about continuity.
usually maps to some sort of mark and sweep garbage collector.
called different things: defragmentation (disk), garbage

(memory), continuity recovery

fo steal some good ideas from malloc:

1. want to allocate things that will dic at same time
together: can allocate objects from same process next (o
cach other.

2. want to allocate things that are the same size together
(since no frag if dic & allocate more of this sizc in future).
could possibly do hi: ion to d ine how
big zone should be.

3. allocate things of same type together: (1) wired (they do),
(2) file blocks (survive longer than process).

can cither select from these in order, or nse recursively.

promiote: want to grow it: how much and when?

- 100 carly, will eat memory for nothing and someone else might
have made better use.

- 100 late and something else might be there
+does when entire range is populated.

if you need 56K do they allocate 64K?
if you need 4MB - 8K do they allocate 4MB?

on aipha:

a fully populated 512K region that goes 1o superpage
will have been populated by 7 64K superpages first.

10/23/2005

Page 52 of 71

don't help. stops when run out of list or made enough for all past
requests. do no harm.)

downside: reused sooner than Iru since contig.

experiments:
- best case, under stress, pathological.

-+ huge set of standard applications, so you can't hide weaknesses.
+ very precise set of attacks on the system.

-~ real in that it runs on an actual system, but only done on that
one system. you'd expect things to work out welt on others, but
no real demonstration.

~ missing numbers: what is the cost of a miss??
- what are the benchmark times in scconds? cannot figure out if
it really matters without this.

6.3: best casc: free memory plentifucl nonfrag. every attempt
to allocate succeeds and reservations not preempted

“is it worth doing at ali?"

- mean elapsed time with warmup. why warmup? [want (o remove
1/O effects - could overstate superpage contribution. |

- many more base pages, but coverage mostly comes from large oncs.
(corrclation in ratio 1o speedup?)

512 8K pages = 1 4MB. so often have a factor of 80 or
$0 covered by the large page.

- why mesa slowdown? doesn't track zeroed out pages

- web has few big pages (allocates many small files so doesn't
benefit)

- fitw has large number of huge pages (almost no speedup with < 4MB)

- matrix goes crazy: misses in Ub all over place:
how one miss per two accesses?

- the page coloring thing is a really good example of how careful
they are. could have casily wmed this (witout realizing it)
into a page coloring paper. page color infuition: assume
spatial locality. make sure that close together thigns do
not conflict in cache. 64K VA will map to 64K PA range in low
order bits.

- big problem: they never show runtimes. 70% in a short program

10/23/2005

Page 53 of 71

probably don't care.

6.4 multiple page sizes: only allow single allcoation and compare
8K (base) + 1 superpage size.

= 13 out of 35 that had diff (the others didn't!)

- looks like 512KB gets ms of the benefit!

- doesn't measure space consumption so not full picture
- mef doubles speed up when can chose between sizes
- fitw makes big diff. why?

- big problem:
their significant digits are nousense. alpha only
counts every 512K misses! so for short programs this
canbe nor n-1 easily, which makes a *2 digit* difference

6.5 handling frag
~ un verous programs (grep, gec, netscape) and within 15 minutes
have sever frag: no region larger than 64K even though 360MB
out of 512MB was free

- restore continuity using the deamon scheme

- cache coalesc all cache pages (clean unmapped) - deamon (trys
to build up larger) by moving inactive to cache (coalescing)
andy by doing wired page segregation. key: treats closed filcs
as inactive as opposed to old version which does not demote
immediately from active->inactive. if no memory pressure can
remain active!

measure impact: run webserver after this experiment

(i.e., when cvictions have occured). slowdown = 1.6%

fig 5 interesting:

- lose continuity over time

- recovers, then runs fTtw, which consumes, then releases
recovers, consumes releases (each spike gets higher)

- ignores inactive pages: could get *morc* continuity
by moving them, but only do so on request, so passively
seem like less contig there.

why doesn't recover all if its available? [does not relocate.
so may have cnough in aggregate, but allocated pages sitling
in middle. nced turnover in these.]

can only recover 20 out of 60 requests. weird:
only gets 35, out of 60 but this gives = best casc
speed up?

6.6. worst case:
1. cost of promotion: allocate memory, touch one byte per page

1072372005

Page 55 of 71

Note: nice way to trade memory-+cpu cycles for reliability.

2. security isolation: hard to break into vmware. only compromise
guest 0s.

how to run OS as an application on top?

1. have to intercept all input from the environment.

2. intercept all places where it interacts directly
with env, or save/restore environment on switch
(c.g., registers)

3. paper's main isti iplexing. machine
mostly idle. rathr than have deadicated one, throw a bunch of
the same machine and just buy a faster one (or save the money).
if not mostly idle then this does not work that well. though:

in the case of memory, could make an argument that aggregation
helps a lot.

four main tricks:
1. how to get pages from the OS.
2. how to share pages across OSes.
3. how to integrate proportional share with some system feedback.
4. i/o pages.

abstractly what is virtualization?
- insert a translation point between all uses of physical
hardware and map them to logical uses

- typically used to go from a small, fixed number of physical
resources {0 a near infinite number that as we exceed just
gets smaler.

- virtualization = translation. intercept + remap to what we want.
for speed, in reality: get a trap on all important events
- use of privileged instruction
- kemel address

can always just interpret the whole thing and force it to
do whatever we want.
when they say non-virtualizable, really means what
features prevent us from running it directly and just
catching when it docs something bad with a trap.

if i think i have X, do i?
- registerrl? yes.
-r/w tlb? sort of gets relabeled.

10/23/2005

Page 54 of 71

dealloc is all promotion in
with no reuse). overhead is 8.9%

pattern

why 3 incremental promotions?
8K->64K, 64K->512K, 512K->4MB.
they say allocate "some memory” so must be > 4MB.

if you memcmp, then overhead is .1%

2. preemption overhead: precmpt all the time, 1.1%. not clear
about this

given: 4MB contig.

1. reserve 1 page 4MB.

2. reserve another +4MB. will break 4MB into 8 512K
regions. the first has a rescrvation. the latter
will have another.

3. do six more allocations,

4. all 512 reserved.

will become 64 64K regions.

3. overhead in practice? very nice experiment: do all benchmarks,
but don't actually do the promotion (still have to do
allocation defrag etc)

4. big benefit from dirty demotion.

.
* ESX Notes.
*

*
*
*

non technigeal:

- carl has won 2 out of the 5 best papers at OSDI.

- libertarian that decided to not go academics since he didn't want
1o take government money.

- real system.

- commercial. good commercial papers are rare (vins has been
the only other one so far).

acording to mendel (wo main things esx used fora lot.:
1. run N app on NT/windows = crash. run one app on NT Avindows
=no crash.

10/23/2005

Page 56 of 71

-PPN? no.

what isn't virtualized?
registers: save and restore
b: flush

what does memory virtualization mean? just one more layer of indirection
VA -> PPN > MPN,

we've already done this. random association. need a table. PT for
VPN->MPN. what for other? [pmap]

casier for PNN -> MPN than for VA->PPN?
dense, small, just use an array.

how to insert this layer?
- every tib insertion have to relabel.

- every address they give to dma device have to redo. and if
the page is too high, have to copy it.

- if they read the tib have to intercept.

- if they can write to raw physical memory have to intercept
loads and stores (¢.g., on the mips)

- when you swilch between OSes, may have to pin additional tb
mappings

- NASTY: if they relic on conflict misses to synchronize the
cache yon may be in big trouble. easily.

what can't we hide?
lime.

overhead:
32MB per VM, 4-8MB used for framebuffer.

page replacement:
Perfect practical = LRU. Perfect worse with ESX = LRU.

if we take our own LRU page what is the problem?

if we are roughly synchronized with guest os and both
make similar decisions, could both decide to page out
the same page.

if we had good knowlege: best thing would be to take somethin
off the guest freelist.

how to find the guest freelist? call getpage() (or equivalent)!

10/23/2005

Page 57 of 71

another possibility would be to give the guest OS a huge amound of
physical memory, so that it is doing eviction paging relatively

less often. what is wrong with that? (onc thing is that most

of its evicted pages will in fact be paged out over time so your
guaranteed that they won't be in memory) also we will blow

alot of overhead in the guest data structures.

one change in view:
naive: only emulate machine to trick OS. not allowed
10 do anything clse.

refined: view OS as a black box. can use any well
defined interface (syscall, driver interface, machine).

figure 2:
black bars: configure OS with exactly that memory.
grey: configure with 256MB, balloon down to the size.

1. why does throughput go up with size?

[large working sct: can use more cache]

2. why is grey bar smatler than black?

[overhead of having more mem]

3. why overhead larger with small?

| same configure, balloon down more = more overhcad)

sharing memory
running multiple copies of same OS: want to coalesce duplicate pages.

how do i decide to share?

-scan or at page out.

~ hash page.

- look up in hash table.

=~ compare equal.

- if already entry:

- if shared? just increment refent.

- if not shared before?

mark COW. [what does this mean?]
change entry, refent=2

- if not equal but hash same: do nothing.

- if not there
insert. what clsc?

table indexed by hash of cach page. maps to cither

hint frame:

hash, PPN, MPN, the VM that has it (so you can go change
page table)

10/23/2005

Page 590f 74

with 1 vmm is the zero page, which will have many
many references.

- will get 1 for each shared page. so is essentially a
count of the number of shared pages. would be better
to have a Jine "ave ref count” and "number of pages
shared”

- why docsn't shared line start at origin? why sharp initial spike?
why tail off quickly?

- why docs it anly go up to 67% shared rather than 100%?

-~ say they reran w/o sharing and didn't perform worse. can they
draw this conclusion [if there is no paging, reasonable.) how
big is machine? is there paging?

Figure 5: "typical"
- why less sharing as you go down?
[could be that linux is tight with less dup [most dup
in os itself] could also be that it sucks at zero
page management: 25MB of 120MB saved for linux,
70MB of 345MB for windows|]

- can view zero page as an annolation that don't need.
- about 1/5 due to zero pages for last two.

32MB cach VMM, 512 -> 360 available, so 320 + 120 = 440 used for
d ization, which isn't an impressive win. (only better

for A)

shares versus working sets.

want to partition for similar reasons to vins, but not get penalized
by idic parts (as much).

need to incorporale feedback from the system. e.g., vs just had the
resident set limit, but didn't have any way (o adjust even if the
other guys were not using.

want to know how much of memory is idle.

samples 100 pages every 30 seconds - what happesn if this
sampling period goes 10 zero? [actually don't want fine grined
measurements! cpu bound app, or blocked on i/o]

use 33 pages after 30 seconds: claims 67% of memory idle.

have pl and p2. need memory: how?
min(s1/pl, s2/p2): many shares, few pages -> more likely to keep.

102372005

generated by a demon that hashes. mark the page as
COW afier hash? no. first write would screw it up.

do a random scan; also always attempt to share page
before pushing it out to disk.

this is why hint: not actually true. may be false.

use PPN:VM 10 go find and modify the page table to change
to read permissions for COW.

shared frame:
hash, MPN, refs.

mark page as COW. big overhead? allocate zero filled,
then write to them,

how to demote? doesn't seem fo.

nice about randem? will bias towards long lived pages! spagetti paradox:
pull spagetti out of pot, will get longer strands.

two experiments, just like superpage: “[sort of] best casc" and
"typical casc”
missing: experiment that measures real amount of memory free

Figure 4;

run 1-10 limx OSes with 40MB spec95 benchmarks for 30 mintues.
same thing, but probably not that well syncronized, and small
buffer cache means won't keep around.

[why granularity different? 30 minutes rather than sec? i think
because its for servers so just care about asymptotic. do care
if it can handle bursts though)

different between shared and reclaimed?

- the memory actually taken back. if two people sharc
a page, shared = 2, reclaimed = 1. if 10 people share,
shared = 10, reclaimed = 9.

s0 the degree of difference inverse proportional to
sharing: more people sharing same page. then goes to
diff of 0%.

- gap at the beginning means that less people share than
later on? why is that? of course: less vms. then
get more asympotic,

- small at beginning then spike because 55% of sharing

fuse feedback with proportionality :
p=$

P(E+k(1-0)

k=1/(1-1, |<=1<inf
r=taxation rate, 0 <=r<]

f=amount of active memory. put a tax on idle memory (1-f).
75% tax means that will take back at most 75% of idle mem.

how to get VMS? need (f+k (1 -0) = 1.
r=0implicsk =1

k(1 -= E+1d-0H)=1

orf=1

f+kA-N)= (1+k*0)=1.

if taxation is 100? k = inf

P(f+inf(1-f)=infl

but it’s relative, so washes out? really weighs any £< 100 very
strongly.

if £ = 0, then scales in direct proprotion.
P*k
what does curve look like as a function of usage?

[*ldraw (f+ K (1 -) for a bunch of ks.

[magnitude of it?
O<=f<=1
1 <=k <inf

=0 means
f+k(1-0)=>0+k-0sodircctly tracks k.

=1 means tracks f.
min(f.min, k.min) <=, <= max(f.max, k.max)

0<=_. <inf]

three averages:
1. slow moving
2. fast moving adapts to working sets quickly
3. super fast
€sxX uses maximum to estimate amount of memory used. implications
1. won't take away that quickly.
2. will give credit quickly.

Page 58 of 71

10/23/2005

Page 60 of 71

10/23/2005

Page 61 of 71

figure 6:
why do estimates trail?
on up:
how slow does it trail? (looks like a couple of minutes)
max works pretty well, tracks it very closely.

on down:
both trail by about 1.5 minutes.

- why above?
does it work?

figure 7
- huge overhead: out of 512MB, only 360MB is available for users!

if we have a .75 tax rate, and 0% use of memory, what is the fraction

we got
S/P*(0+ 1/,25)= SAP
S1=82, Pl =P, then 174

... and 100% use of memory?

S/P*(1+4%0)=S/P,

increases amount of memory used by 4x. could have
allocated 4x more memory and used 100% of the time for
the same share.

why doesn't the line go up to
180 + 180 * 75 = 3157

[max configured: 256. min is probably 100, though doesn't say]

we really can't figurc out how well it works. you'd need to
configure max (o be 320 at least.

why does VM2's line go up at first? booting, so pretty busy
zeroing pages (windows) drops after.

allocation policies.

how much memory a guest gets is determined by:

min: guaranteed, never take.

max : configured linux to think it has that much.

shares: relative proportion of memory you can use. 2x = 2x more mem

- max = min, then sharcs don't matter.

- if not overcommitted then you get max.

- if sum of min + overhead = the amount of physical memory,
then do not let other VMMs run.

10/23/2005

Page 63 of 71

- why does sharing go down? (run different apps. at the beginning
lots of zeros, and shared code)

- as active shoots down, why does alloc not go much below?
[configured with 1GB: always try to get that much in
use]

- between 20-30 why does it go down much more than 1GB?
[overshoots when transition to hard]

- why does it go above 1GB? might be accounting? or includes
vmware mem too? i think it counts shared memory = S*refs.
[aggregate allocation = 1.2GB]

- why does it mirror the ballooning linc?
[taken back with ballooning, mirrors active too]

- why does ballooning mirror the active line? [different apps.
one goes up, the other app gets ballooned)

- how much shared? (about 20%)

- two inital peaks, one pushes to the low state, one pushes to the
hard state: why? [i think is partly because (1) booting so cannot
use ballooning and (2) first peak is a rapid increasc from almost
nothing, the sccond is a relatively small delta + already over
shot goal]

©
- active tracks alloc morphology really well, as ballooning does
inverse

- shared rises over time, any ideas why?

the fact that balloon mirrors alloc must mean that the guest os
is pushing, trying (o consume more memory.

interesting: seems like taxation kicked in, since active in citrix
causes balloon to go down, and alloc to go up in a very similar
fingerprint pattern.

how different than vms?

- get OS on top to do some of the work (ballooning)
- fluctuates the RSL

- how different than LRU?

- how many references per page on average?
67% of memory shared.

60% of all memory is reclaimed.

1 page for each shared group.

10/23/2005

= how much aggregate disk space?
sum of (max - min)
- will never page you below min. ever. does this cause problems?

when does page deamon kick in?

do nothing

high (6%) - —

start using balooning (paging if no baloon driver)
soft (4%) ~> ==

paging
hard (2%) —> ——
paging + block vms that > min.

low (1%) = —
trics to a]ways be above high. Ihe syslem transitions to a hnghcr state
¢ after funny that itis so
close to llw wall. disk la|cncmam 50 slow...
figure 8:
1. windows (2 vms, mi ,max=256MB mem)

a exchange server, . windows 2000 server.
b. load generator (10 a), windows 2000 professional

2 cimx (2 vns, mir MB, max=320MB mem)
server, wi 2000 server.
b client load generator, windows 2000 server

3. sql server (1 vm, min=160MB, max=320MB mem), windows 200 server.

Sum = 1.4GB, machine has 1GB

- share before swap:

- 325MB of zero pages not sent to disk.
- 35MB of non-zero written 1o disk.

- why initial dip? [zeroing] page 32MB out of 325MB actually hit
disk because of share before swap.

(d) idle so gos down to 160MB (min) or so. query kicks in, then
jumps back up. (at the same time, balloon goes down since
memory is not idle)

- what determines the size of the spike up? 320MB is hte max (check)
®)

assume 100 pages.
67 pages shared
60 reclaimed.
7 pages lefl, so 7 distince groups.

reclaim = (unique pages * (references - 1))

reclaim
——+1=refs

reclaim
—— +1=refs
shared - reclaim

60 +1

7
9.57 = refs.
makes sense: have 10 OSes.

why not exactly 107 (probably some inter sharing, plus any stuff
that gets not synchronized)

refs for other boxes tables
A=673/(880-673) +1 =425
B =345/(539-345)+ 1=277
C=120/(165-120.0) = 2.67

isolation and are icting goals. fund:

the only thing you can do is decide how much to weigh one or the
other. that is it. his taxation does this simply in a smooth
function without weird discontinuities.

Nooks notes

“sxr e e

where did this come from?

Page 62 of 71

10/23/2005

Page 64 of 71

10/23/2005

Page 65 of 71

there was a glut of os extension work in the mid ninetics.

straightfoward performance story: kernel does htings in slow,
general way. if can customize get 10x.

this got a lot of superstars tenure (bershad, kaashoek) and got
me a stanford job, stefan (in part) a stanford offer, gun sircr
acomel position.

but in the end, nothing much changed.

there was a lot of techniques developed to jam code you didn't
trust in vulnerable places.

these tricks have appeared after in different contexts.
this is one: problem is casicr.

how do they sell their trick?
drivers acconnt for majority of os crashes,

how to fix?
better testing? better language? better [Q?7

simple:

1. catch driver ¢rror

2. free its resource (must track them)
3. reboot it

What are three goals of the system:
Isolation - don't let fault in one extension infect rest of system
Recovery - support automatic recovery afler a function
Backwards compatibility - e.g., work with Linux

demands:

- detection: no deteet, no do.

- reboot must fix eror. not determistic.
- what happens to application?

zero-modification backcompat as a big thing.
what is the altermative? just write things in a type safe
language. lots of dead systems that did this.

make surc to keep hindsight test in: if' someone told you they
could get rid of 85% of OS crashes without modifying anything,
you'd think they were nuts.

deployment story: if you just want to prevent, is pretty casy
to do at the level they did. they want it to be transparent,

10/23/2005

Page 67 of 71

if you have dthe cap you can write, othenwise no.

bill daliy built one of these. M machine. these tend to
not get used all that much.

what is a problem of copy?
- cost

- if someone clse modificd, last writer wins, doens't
seem (o synchronize

Might need to follow/adjust any pointers in data structures
what if you don't? exiension may crash for no good reason.
you must copy anything they do writes (0.

Adjust stack pointer
why not use the same stack?
cormupt?
Load %cr3 with address space of extension
=== [un extension
Switch %cr3 and stack back
Copy results back; sy any modified
What about i kemel data
Fortunately, often donc lluoug,h macros and inline functions
Can change thesc into XPCs
Where do page tables come from when loading %cr3?
Nooks has to maintain a sct of "shadow" page tables
Just change code where lhmx touches page tables
Have to modify page faunlt handler... how?
Task structure on kernel stack?
Could you optimize this process on the x867
If extensions are in different 4 MB regions... maybe re-use page tables
(Just clear PTE_W in page directory entry)
Orat least do this for some regions (ml;lu not work for buffer cache)
Also, maybe targeted TLB flush in stead of %cr3 load?
What is deferred XPC mechanism? Where/why does this come in?

what happens when limx modifies the kemnet page table?
have to propagate to * ALL* extension PTs?

what would we have to do if we wanted to protect cach procedure call?
entire OS would essentially be RO.

copy in its parmmeters.

copy them out.

if it blows up? this is kind of the problem. must be able to
restart it. not really clear how (o restart gsort. if you reset

its state and go forward will blow up again. could blow it up and
20 back up callchain until you hit something you could restart.

why not do for every procedure call?
huge performance kill. multics did this actually. never

10/23/2005

how compare to aliernative?
=~ cap = hw, so they are safe
- microkemmel = reorganize entire os, so safe
- language = rewrite so safc
- driver arch (sarae as micro)
also no recovery for previous

~ transactions: don't fit most things. still have 1o detect
- virtual machine: this is kind of weak
- static analysis: going to miss things.

what's downside of nooks?

- can be expensive

- doesn't catch everything

- doesn't really work for kemnel

says "major feature” of nooks is "virtualizing only the intesface between
kernel and extension” as opposed to virtual machines. what does this
mean?

nooks = {wo nouns
lightweight protection domain
XRPC

lightweigit kemel protection domain
isn't this just a misspelling of VM? what's the diff?
just protection; in same addr space.
08 =RO.

bow to isolate?

RO kemnel.

WR extension.

any kemnel data structures you need 1o write are explicitly marked
- cither copied.

-oranid is stored.

switch page tables + stack on call,

Use paging hardware to protect kzmcl & extensions against bad extensions

See Fig 3: Kemel can writc everything, ions only write th
Use Extension Procedure Call (XPC)
What do you have to do to call into an extension? (Fig. 4)
Copy any data to where ion can write them

why copy? what would elxmmnlc"

[s0 extension cannot trash the data structure]
i.e., protection.

what hardware support would obviate copying?

if you could protect byteranges. this is what capability
systems do. can take arbitrary bytes and associate a
Glpﬁbllll\’ with it. cach process has a list of caps.

made people that happy.

probably faster (o do a better language. or recompile C with
asafe C compiler.

a problem with asymetric.

if we could fix C to provide the protection they need, what would we do?
the only protection they give is that you cannot trash pointers

or write beyond the end of an object. i believe. this is straight

mem protection.

acmally i think they do some parameter validation. at least
for lifetime.

‘What arc wrappers? How do they work?
Three purposcs:
Check parameters for validity
Implement call-by-v: alue-result? (What's this vs. call by reference?)
Perform XPC
Basically works through linker
‘Who writes a wrapper?
‘Tool auto-generates skeleton from header
Fill in by band
Need 1o know propertics (Perhaps extractable by Metal)
How specific to each extension is the wrapper? See Fig. §

What is Object Tracking and why?
Records address/type of all objects in use by an extension
If used for call, just attach to stack
If held, keep in per-cxtension hash table
If ext. might write object, keep association between kem & ext, versions
How do you know lifetime of objects?
By hand inspection - determine type of object
passed in for call, allocated/deallocated by ext., special (timer), ...
Do you always copy objects?
No... more efficient just o re-map network & disk buffers

problem with copying if other people use?
lost updates. locking does not help.

How do you detect a fault?
Easy cascs... page fault or other exception in extension
What about harder cases... ¢.g., no network packels received
User can detect and initiate recovery

- cat to much resource
- invalid parameters

- exception.

- user can say

Page 66 of 71

1072312005

Page 68 of 71

10/2372005

Page 69 of 71

How do you recover from a fault?
- Disable any interrupts vectored to the extension, if driver
(what if you didn't do this... conld get livelock or worse)
- Invoke user-mode recovery agent
Perform extension-specific recovery, notify sysadmin,
Change configuration, disable after repeated failures, ...
By default, unloads and re-loads module
What's this about intermuptable vs. non-interruptible state?
What about allocate memory? (This is why we need object tracking)
What about thinks like network buffers w. pending DMA?
Only free buffers after re-loading driver
after it has re-initialized the device

probelm with release?
things outside extension may be using
kernel may have on list
HW may have in device DMA.

what arc their speed hacks?
deferred call. batching: crossing line is cxpensive. so batch
it up. total hack.

shadow copy of data. do write buffering and then flush. saw
already in VMS. instead of disk, mem, is extension and kemel,

what does nooks not protect?
screw up device, deliver bad packets, don't send.

Set %esp to something bad and take an exception (what happens on x86)
DMA 1o physical memory you can't write

move something to %cr3

disablc interrupts and loop forever

logic bugs that don't involve trashing memory

why not protect against pt register modification?

does it work to scan binary?

can gencrate code and jump to it.

50 would have to check thta always running code that you vetted.
check at every indirect jump.

cval
what does the fault injection actually do:
uninitialized (i think this just means that load returns random)
bad pointers
null
invert (ests

why not just nan with real bugs?

- would be good to do to validate
- but not so comprehensive.

10/2372005

Page 71 of 71

what is cost of TLB?

Would same ideas apply to other OSes?
Authors claim Linux is worst case scenario? Why? Do we believe this?
In terms of lots of ill-defined extension interfaces, probably true
That linux doesn't reboot on process-context panic might help, though
Could Nooks be applied to the JOS kernel?

10/23/2005

Page 70 of 71

How do you evaluate something fike this?
Care about whether it imp iability, and cost in P

How to measure reliability?
Is this realistic?
How do results look?
Too optimistic or pessimistic?

Performance... Let's look at table 4:
why do we have cpu utilization? isn't this captured by overhead?
-no: might have dead spots whre you're waiting and you

can do other things. send-reply.

Play-mp3 looks good
Why does send-stream have more XPCs than receive stream?
Why does this not matter for performance?
Why does compile take bigger hit than send-stream (which has more XPCs)?
Compile is CPU-bound
How did they produce graph in Figurc 8?
What is statistical profiling? What does this tell us?
Why don't they show user-mode exccution time?
Where is CPU time going?
Extra code -- ¢.g., XPC, object tracking
Existing code running more slowly?
Why? TLB misses; What arc "Pentium 4 performance counters"?
Why does khttpd do so much worse under Nooks? (60% worse, ouch)
15K page/sec -> 6K pages/sec
CPU problem, like compile
Also, transactional, not buffered... how does this affect things?
Do we care? khittpd does sound like a bogus project
Maybe use on ded if you care so much..

what is difference between 6 and 77
- why sb so diff? [doesn't do reads, right? so mostly in response
to app]

if it restarts, is system in good state?
[not for vfat: 90% screwed it up. fix? call sync = 10%)]

in 7: why not bars to go zero?
eth: unable to send/rec, cannot detect.

non-functioning, but not exception.

why hkttpd has so many crashes?

does a lot at interrupt level (reply to msg there?)
so kil

what is the cost of an xpc?

10/23/2005

