
Stanford University Computer Science Department
2007 Comprehensive Exam in Databases

• The exam isopen book and notes, but not open computer.

• There are six problems on the exam, with a varying number of points for each problem and
subproblem for a total of 60 points (i.e., one point per minute). It is suggested that you look
through the entire exam before getting started, in order to plan your strategy.

• Please write your solutions in the spaces provided on the exam. Make sure your solutions
are neat and clearly marked.

• Simplicity and clarity of solutions will count. You may get as few as 0 points for a problem
if your solution is far more complicated than necessary, or if we cannot understand your
solution.

MAGIC NUMBER:

Problem 1 2 3 4 5 6 TOTAL

Max. points 10 8 12 18 3 9 60
Points

1

1. Data Modeling (10 points)

Design an Entity/Relationship diagram for a database that holds the following information:

i. There are teams. Each team has a unique team name, a city in which it plays, and a
mascot.

ii. There are players. Each player has a name, a number, and a position. Each player plays
for a unique team.

iii. Teams assign unique numbers to their players, but two teamsmay use the same num-
bers.

iv. Each team has at most one team captain, who is a player.

v. The day on which two teams play, and which team is the home team if they do play.
You may assume no pair of teams plays more than once.

Your diagram should be as succinct as possible, but must capture all the above information.
If you find the specifications ambiguous, appeal to the way theworld actually works, e.g., it
is entirely possible that two players have the same name.

2

2. Dependency Theory (8 points)

The following functional dependencies hold in relationR(A, B, C, D, E, F):

AB → C

DE → F

F → B

C → E

Find all the keys forR. Explain your reasoning for partial credit.

3. Relational Algebra (12 points)

Suppose we have a relationT (P, C, I) representing a tree. That is, nodes are represented by
integers, and the meaning of a tuple(p, c, i) in T is that nodec is theith child of nodep, from
the left. We want you to write certain queries inrelational algebra, using only the basic
operations: select, project, natural and theta join, product, renaming, union, intersection,
and difference. You may define temporary relations if you like; i.e., you may break an
expression into a sequence of steps. To receive full credit,your expressions should be (close
to) as simple as possible.

(a) (3 pts.) Write a query to produce the set of distinct pairsof nodes that are siblings (i.e.,
they have the same parent).

3

(b) (3 pts.) If you can use arithmetic in selection conditions, e.g.,x = y + 1, then it is
relatively easy to write a query that produces the set of pairs (a, b) such thatb is the
right-sibling of a; that is,a andb have the same parent, andb is immediately to the
right of a among the children of their parent. Write this query.

(c) (6 pts.) But you do not need arithmetic to write the query of part (b). Write the same
query, using only conditions of the formxθy, whereθ is a single comparison operator
(e.g., = or<) andx andy are attributes or constants. Both selection and theta-joinare
limited in this way.

4

4. SQL (18 points, 3 each part)

Two queries areequivalent on a database instance if they produce the same result relation
when evaluated over that instance.

Consider a SQL database with two tables,R(A, B) andS(C). AssumeNULL values are not
permitted in any attribute; make no other assumptions aboutthe data.

Below are pairs of queries. For each pair, select one of the following three options:

• EQ – The two queries are equivalent on every possible instance of R andS.

• NEQ – There are no instances ofR andS on which the two queries are equivalent.

• SEQ – The two queries are equivalent for some instances ofR and S, but not all. When
choosing this option, state conditions over the data inR andS that ensure the two
queries are equivalent. Try to make the conditions as general as possible, meaning
whenever the conditions are violated the queries may not be equivalent. (E.g., “The
tables are empty” is not a good choice.) The conditions should be stated succinctly and
should use SQL constraint terminology (e.g., “A is a key”) when applicable.

(a) Query1: Select A From R
Query2: Select A From R, S

EQ, NEQ, or SEQ with condition:

(b) Query1: Select A From R
Query2: Select A From R, S Where B = C

EQ, NEQ, or SEQ with condition:

(continued on next page)

5

(c) Query1: Select Distinct A From R
Query2: Select A From R Group By A

EQ, NEQ, or SEQ with condition:

(d) Query1: Select count(*) From R
Query2: Select count(Distinct A) From R

EQ, NEQ, or SEQ with condition:

(e) Query1: Select max(A) From R
Query2: Select A From R Where A >= all (select A from R)

EQ, NEQ, or SEQ with condition:

(f) Query1: Select Distinct A From R Group By A Having max(B) > 10
Query2: Select Distinct A from R Where B > 10

EQ, NEQ, or SEQ with condition:

6

5. Views (3 points)

Is it possible to create an index on a SQL view? Answeryes or no, with a brief explanation.

6. Transactions (9 points, 3 each part)

Consider two tablesR(A, B) andS(C) as in Problem 4. Below are pairs of transactions.
For each pair, decide whether it is possible fornonserializable behavior to be exhibited
when executing the transactions together, while respecting their specified isolation levels.
Assume each transaction completes successfully.

(a) Transaction 1: {
Set Transaction Isolation Level Read Committed;
Select count(*) From R;
Select count(*) From S;
Commit;
}

Transaction 2: {
Set Transaction Isolation Level Serializable;
Insert Into R Values (1,2);
Insert Into S Values (3);
Commit;
}

Nonserializable behavior possible (yes or no)?

(b) Transaction 1: {
Set Transaction Isolation Level Read Committed;
Select count(*) From R;
Select count(*) From S;
Commit;
}

Transaction 2: {
Set Transaction Isolation Level Serializable;
Insert Into R Values (1,2);
Insert Into R Values (3,4);
Commit;
}

Nonserializable behavior possible (yes or no)? ** one more on next page

7

(c) Transaction 1: {
Set Transaction Isolation Level Repeatable Read;
Select count(*) From R;
Select count(*) From S;
Select count(*) From R;
Commit;

}
Transaction 2: {

Set Transaction Isolation Level Serializable;
Insert Into R Values (1,2);
Commit;
}

Nonserializable behavior possible (yes or no)?

8

