
Comprehensive Exam: Programming Languages Autumn 2006

1. (21 points) . Short Answer
Answer each question in a few words or phrases.

(a) (3 points) Why is memory usually separated into a stack and a heap?
Answer: Local data structures used only inside one block can be allocated/deallocated
more efficiently using the stack discipline. When the lifetime of an object exceeds the
lifetime of the block where it is created, some other mechanism (user deallocation or
garbage collection) must be used to deallocated that space.

(b) (3 points) Why is it possible to implement C without creating closures?
Answer: No C functions are declared in nested scopes. If a function is passed to
another function, then the lexical environment of the function that is passed is the
global environment of the function it is passed to. Similarly, if a function is returned
from another function, its lexical environment is the global environment, not a local
environment of the function from which it is returned.

(c) (3 points) What is the difference between overloading and polymorphism?
Answer: Overloading allows one symbol to have more than one meaning. Over-
loading is resolved at compile time. Polymorphism allows a single function to be
applied to many different types of arguments. Although a polymorphism function
may conceptually have many different types, the name of a polymorphic function is
associated with one algorithm, not many.

(d) (3 points) Explain the difference between subtyping and inheritance.
Answer: Subtyping is a relation between interfaces (or types), while inheritance is
a relation between implementations.

(e) (3 points) If A <: B and B <: C is A→B <: A→C ? Why or why not?
Answer: Yes, by covariance of function types, B <: C implies A→B <: A→C. If f is a
function of type A→B, then f(x) has type B. Since B <: C, the return value f(x) can
appear where a value of type C is required. Therefore f can be used when a function
of type A→C is needed.

(f) (3 points) Explain how the Java compiler treats this statement and, if the state-
ment compiles, what happens at run time?

Character c = (Character) new Object();

Answer: This statement compiles, because the cast makes it type-correct at compile
time. However, a run-time error occurs when the statement is executed.

(g) (3 points) What property of the Java architecture makes it necessary to do byte-
code rewriting to get efficient method lookup?
Answer: Run-time loading and linking of separately compiled class files. More
specifically, a class file that calls a method on objects of class C may be compiled
without knowing what class C will look like at run time. Therefore, the class file
cannot be compiled to use fixed offsets of methods in the method table of class C.
However, after C is loaded, the bytecode can be rewritten to use a fixed offset.

2. (9 points) . Pointer arithmetic
Unlike most programming languages, C allows pointer arithmetic. This question asks
you about advantages and disadvantages of this language feature, with some parts of the
question referring to the following excerpt from a JPEG decoder that performs a discrete
cosine transformation using a loop that iterates through an array of elements.

void jpeg_fdct_ifast (DCTELEM *data)
{

...
DCTELEM *dataptr;
int ctr;
...
/* Pass 1: process rows. */
dataptr = data;
for (ctr = DCTSIZE-1; ctr>= 0; ctr--) {

tmp0 = dataptr[0] + ... + dataptr[DCTSIZE-1];
...
dataptr += DCTSIZE; /* advance pointer to next row */

}
...

(a) (2 points) Name two disadvantages of pointer arithmetic. In answering the ques-
tion, consider compiler features, desirable language properties, or language run-time
features that are difficult or impossible in languages with pointer arithmetic.
Answer: Type safety, array bounds checking, garbage collection.

(b) (3 points) One argument sometimes given in favor of pointer arithmetic is ef-
ficiency. In the code example above, each loop iteration processes one row of a
DCTSIZE×DCTSIZE matrix whose entries are stored sequentially in memory. Iter-
ation number ctr accesses the elements data[DCTSIZE ∗ ((DCTSIZE − 1) − ctr)] to
data[DCTSIZE∗ ((DCTSIZE−1)−ctr)+(DCTSIZE−1)]. Explain why this loop above
might be more efficient than a loop that uses expressions of the form data[DCTSIZE∗
((DCTSIZE− 1)− ctr) + i] to index into the data array.
Answer: No need for repeated addition and multiplication to compute the array
index.

(c) (2 points) Suppose that the omitted code inside the loop accesses memory using
∗(dataptr + j), with j set by a for loop that only gives j values between 0 and
DCTSIZE − 1. Explain why all memory accessed by the loop is memory that is
allocated to the program, assuming that the function parameter data points to a
heap-allocated region of DCTSIZE ∗ DCTSIZE locations.
Answer: A simple calculation shows that for 0 ≤ ctr ≤ DCTSIZE− 1 and 0 ≤ j ≤
DCTSIZE−1, we have dataptr = data+(DCTSIZE−1−ctr)∗DCTSIZE and therefore

data ≤ data + (DCTSIZE− 1− ctr) ∗ DCTSIZE + j
≤ data + (DCTSIZE− 1) ∗ DCTSIZE + DCTSIZE− 1
= data + DCTSIZE ∗ DCTSIZE− 1

(d) (2 points) Consider the more general setting of a pair of nested loops of the fol-
lowing form:

for (i = 0; i < imax; i++) {
for (j = 0; j < jmax; j++) {

...

... data[i*A+j*B] ...

...
}

}

2

i. (1 points) Assuming a simple-minded compiler with no loop-related optimiza-
tions, what arithmetic operation is used to compute the location data[i*A+j*B]
in each execution of the inner loop ?
Answer: Two multiplications and an addition.

ii. (1 points) Suppose A and B are constants and i and j are only used inside
array indices. What could an optimizing compiler do to simplify the arithmetic
that is needed on each execution of the inner loop?
Answer: The product i ∗ A can be done outside the inner loop. In addition,
the expression i ∗ A + j ∗ B can be recognized as a linear function of the loop
variable j and compiled using repeated addition of j on each loop iteration. This
eliminates the multiplication j ∗ B.

3. (10 points) . Scope and parameter passing

(a) (4 points) Consider this simple program.

1 { int x;
2 int y;
3 int z;
4 x := 3;
5 y := 7;
6 { int f(int y) { return x*y };
7 int y;
8 y := 11;
9 { int g(int x) { return f(y) };
10 { int y;
11 y := 13;
12 z := g(2);
13 };
14 };
15 };
16 }

What value is assigned to z in line 12 under static scoping? Answer: 33
What value is assigned to z in line 12 under dynamic scoping? Answer: 26

3

(b) (6 points) What are the values of y and z at the end of the following block under
the assumption that parameters are passed:

i. call by value Answer: y = 10, z = 13

ii. call by reference Answer: y = 15, z = 15

iii. call by value-result Answer: y = 13, z = 13

{ int y;
int z;
y := 7;
{ int f(int x) {

x := x+1;
y := x;
x := x+1;
return y

};
int g(int x) {

y := f(x)+1;
x := f(y)+3;
return x

}
z := g(y);

};
}

Answer: Here are traces for each case.

Value:
g(7)
f(7)
x=8
y=8
x=9
ret 8

y=9
f(9)
x=10
y=10
x=11
ret 10

x=13
ret 13

z=13

Reference:
g(y)
f(y)
y=8
y=8
y=9
ret 9

y=10
f(y)
y=11
y=11
y=12
ret 12

y=15
ret 15

z=15

Value-result (assignments in parens from copying-out):
g(y=7)
f(x=7)
x=8
y=8
x=9
ret 8

(x=9)
y=9
f(y=9)
x=10
y=10
x=11
ret 10

(y=11)
x=13
ret 13
(y=13)
z=13

4

4. (12 points) . Dynamic Lookup
Answer each of the following questions about dynamic lookup in Smalltalk, C++, and
Java in a few concise, carefully worded and legible sentences. Focus on the main points
that distinguish these languages.

(a) (3 points) Briefly describe the C++ implementation of dynamic lookup, mention-
ing the key data structure(s).
Answer: Uses indirection through the vtable of the class with an offset known at
compile-time

(b) (3 points) Briefly describe the Smalltalk implementation dynamic lookup, men-
tioning the key data structure(s).
Answer: Method dictionary with a run-time search. If a method is not found in
the method diction of a class, the superclass dictionary is searched next.

(c) (2 points) Which implementation would you expect to run faster? Why?
Answer: C++; the offset of the method in the table is known at compile-time, so
there’s no need to search the vtable at run-time

(d) (2 points) Could Smalltalk use the C++ implementation of dynamic lookup? Why
or why or not?
Answer: No, smalltalk is not a statically typed language, so different classes might
have the same method in different positions in the method dictionary. Therefore, a
run-time search is needed.

(e) (2 points) How is Java similar or different from each of these implementations?
Answer: Java uses the Smalltalk-style search algorithm the first time a method is
called from a specific line of the source program. If the class is known at the call
site, then subsequent calls use the C++-style lookup.

5. (8 points) . Concurrency and Parallelism
Graphics processors (GPUs) are one example of a parallel processor that nearly everyone
has on their desktop. The frame buffer is a region of memory on the GPU that stores
pixel colors. In a single rendering pass, the frame buffer can only be written to and can
not be read from. Conversely, the rest of the memory on the graphics card can be read
from at any time but can not be written to. After a rendering pass, the frame buffer
can be copied into another part of memory where the values can be read in a subsequent
rendering pass. These restrictions are enforced by the device driver for the GPU.

(a) (3 points) What general problem with concurrent memory access do we solve by
having a write-only frame buffer with all other memory being read-only?
Answer: Some approach is needed to handle race conditions. These restrictions
avoid race conditions without using locks. It also avoids reading pixels that have not
been calculated and written yet.

(b) (3 points) Java concurrency primitives allow us to write a multi-threaded software
simulation of the parallel processors in a GPU. Suppose we wanted to use our GPU
simulator to see what happens when we change the frame buffer from having write-
only access to having both read and write access.
Fill in the blanks in the following Java FrameBuffer class. You may need to write
more than word per blank. Explain in one sentence.

5

class FrameBuffer {
private FBdata[] pixels;
...

public ____________________ read(int addr) {
return pixels[addr];

}

public ____________________ write(int addr, FBdata data) {
pixels[addr] = data;

}

...
}

Answer: We’ll need to synchronize both reads and writes because assignment is not
atomic

(c) (2 points) After running several experiments with your Java GPU simulation, you
decide that allowing frame buffer reads would be a very useful feature. (This is
actually true for some graphics algorithms.) There is a condition, restricting which
threads get to write to each pixel, that would allow writes without introducing
concurrency problems. Since a hardware implementation of pixel locking is too
expensive to be feasible, what condition on access to pixels or groups of pixels could
a device driver enforce to prevent concurrency problems? Explain.
Answer: If a program can guarantee that the value read from the frame buffer is
only being read by the same process/thread that writes the new value and nobody
else (ie the computation that writes pixel[i,j] is the only one that can have read access
to pixel[i,j]). This means the modification will not effect any other processing, and
no locks are needed.

6

