Comprehensive Exam: Algorithms and Concrete Mathematics
Autumn 2004

This is a one hour closed-book exam and the point total for all questions is 60.

In questions that ask you to provide an algorithm, please explain the algorithm in words and
diagrams, no need to write code or pseudo code. Also, for any algorithm, state and prove its
running time. No credit will be given for exponential-time algorithms. Polynomial but slow
algorithms will get some partial credit. Amount of credit will depend on how much slower they
are compared to what is achievable using the knowledge in the reading list.

For full credit, the answers should be short and precise. Long and convoluted answers will not
get full credit even if they are correct.

1. [14 pts] Please answer "true” or "false” to each one of the following questions. Correct
answers will give you (2 pts) each while wrong answers will reduce your score by (2 pts)

each.

N
b
C
a

¢
4
‘iw

2n = O(n?)
Answer: TRUE
n! = o(n")

Answer: TRUE
(logn)'® = Q(¥Un)

Answer: FALSE

Any graph with n nodes and m edges has a spanning tree with n — 1 edges.

Answer: FALSE, graph can be disconnected

Assume that T is a minimum cost spanning tree for a weighted graph G = (V, E)
with positive weights w : E — R*. Will T' be still a minimum cost spanning tree if
instead of w we use logw ?

Answer: TRUE, relative order of weights does not change

You are given a graph G = (V, E) with positive lengths on edges and a shortest path
P from v € V to u € V. Next, lengths are transformed by uniformly adding 1 to the
length of each edge. Will P be still a shortest path from v to u ?

Answer: FALSE

Let A be an array of n distinct numbers. The goal is to rearrange the numbers so
that Vi where 0 < i < n/2 we have A[i] < A[2{]. It is true that this operation
requires {2(nlogn) time in the comparison model?.

Answer: FALSE

2. [15 pts] Let u and v be two n-bit numbers, where for simplicity n is a power of 2. The
traditional multiplication algorithm requires ©(n?) operations. A divide-and conquer
based algorithm splits the numbers into two equal parts, computing the product as

wv = (a22 + b)(c2™? + d) = ac2™ + (ad + bc)2™/? + bd

Here, a and c are the higher order bits, and b and d are the lower order bits of u and v
respectively. Multiplications are done recursively, except multiplication by 2 for integer i,
which is a shift and we assume takes ©(z) time. We also assume that addition/subtraction
of i-bit numbers takes ©(z).

e [6 pts] Write a recurrence for the running time of this algorithm as stated. Solve
the recurrence and determine the running time.

Answer: T(n) = 4T(n/2) + ©(n),T(1) = 1. This means that T'(n) = ©(n2), no
improvement over brute-force approach.

e [9 pts] Note that ad + bc can be computed as (a + b)(c + d) — ac — bd. Why is
this advantageous? Write and solve a recurrence for the running time of modified
algorithm.

Answer: There is one less multiplication per iteration, resulting in T'(n) =
3T(n/2) + ©(n), T(1) = 1. This means that T'(n) = O(n'°823) = o(n?).

Note that, strictly speaking, some of the multiplications are of n+ 1-bit numbers and
not n-bit numbers. Our calculations are still correct since to multiply two n + 1-bit

numbers, one can execute a single multiplication of two n-bit numbers plus ©(n)
extra work.

3. [16 pts] Given a set of items z,,z9,...,T, where item z; has a non-negative weight
w(zx;), the goal is to find a subset of items with maximum total weight under the constraint
that if item z; is chosen, then you are forbidden to chose either x;; or z;_; (forbidden to
choose the "neighbors” of z;). For example, you can choose z5,zs, and z9, but you are
not allowed to choose x5, 26, Zg, £11. Design an efficient algorithm to solve this problem,
prove correctness and analyze running time. For simplicity, your algorithm should just
produce the value of the maximum total weight and does not need to list the items that
you are choosing to achieve this weight.

Answer: Let W; denote the maximum weight that we can collect by choosing only
among items numbered 1 through i. Clearly, W, = z;. To compute W;,; we need to
consider two cases: either x;,; participates in the optimum solution when the problem is
restricted to items 1 through 7+ 1, or not. If it does not, then the optimum solution is the
same as optimum for problem when input is restricted to items 1 through i, i.e. in this
case Wiy1 = W,. Alternatively, if z;,, participates, then z; cannot participate. We claim
that Wi, = Wi_1 + w(z;4+1) in this case. To prove this claim, assume that there is an
optimum for the restricted problem (items 1 through i+ 1) that includes 7+ 1 and that is
that produces weight larger than W1 = W;_; +w(z;41). Since z;41 participates, z; does

not, and thus removing z;; from this solution we get a legal solution for the problem
restricted to items 1 through ¢ — 1 with weight higher than W;_,, which contradicts our
assumption.

To summarize, W;;1 = max{W;, W;_; +w(zi+1)}. This takes constant time per iteration.
With n iterations, the total is ©(n). Observe that one does not need an extra array of n
elements to hold all the computed W; values since at each iteration it is sufficient if we
store only the latest two values, W; and W,;_;.

. [15 pts] Consider a section of highway with numbered exits. You are given information
about n cars that you suspect of speeding. Car ¢ will enter the highway at point s; and
exits at t; > s;. The goal is to place minimum number of photo-radar units along the
highway to ensure that you will catch (photograph) all of the n speeding cars. (Assume
that once the photo-radar is placed, you cannot move it.)

We say that paths of two cars ¢ and j do not intersect (disjoint) if ¢; < s; or t; < s;.
Observe that if there is a set of k of cars that have disjoint paths, then you will need at
least k photo-radars.

Let k* be the size of the maximum-size set of cars with disjoint paths. The observation
above implies that you will need at least k* photo-radars. Prove that in fact £* photo-
radars is sufficient, i.e. there exists a placement of k* photo-radars that will photograph
all of the cars.

Answer: Car i corresponds to a closed interval (s;, ;). We will prove the claim by
giving an algorithm that finds % disjoint intervals and k places for photo-radars such that
each interval has at least one photo-radar in it. By definition, &* > k. Moreover, since k
photo-radars are sufficient, k* < k. Thus, k* = k, proving the claim.

The algorithm starts by ordering all intervals in increasing order by t;. Pick the first
interval in this order (s;,,t;), mark it, and delete it from the set. Place photo-radar
at t;, and delete all intervals that intersect with (s;;,%;,). Repeat until all intervals are
deleted. Result is £ marked intervals and k photo-radar placements.

First we claim that, by construction, all ¥ chosen intervals are disjoint. Next we claim
that the placed photo-radars will photograph all cars, i.e. for every interval there is a
photo-radar that is placed at one of the points in the interval. Observe that each iteration
results in placement of a photo-radar and deletion of some intervals. We claim that all
deleted intervals in an iteration are "touched” by the photo-radar placed in this iteration.
This is trivially true for the interval marked in this iteration. Consider an interval (s;,¢;)
deleted during iteration g. By construction, ¢; > ¢; . The only way the photo-radar at ¢;
does not touch it is if s; > ¢; . But in this case we will not delete this interval.

One can implement this algorithm to run efficiently, but this is irrelevant to the question,
since all we needed was a proof of the claim.

