
Comprehensive Exam: Programming Languages Autumn 2004
This is a 30-minute closed-book exam and the point total for all questions is 30.

All of the intended answers may be written within the space provided. (D o not use a
separate blue book.) Succinct answers that do not include irrelevant observations are preferred.
You may use the back of the preceding page for scratch work. If you to use the back side of a
page to write part of your answer, be srre to mark your answer clearly.

The following is a statement of the Stanford University Honor Code:

A. The Honor Code is an undertaking of the students, individually and collectively:

(1) that they will not give or receive aid in examinations; that they will not give or
receive unpermitted aid in class work, in the preparation of reports, or in any other
work that is to be used by the instructor as the basis of grading;

(2) that they will do their share and take an active part in seeing to i t that others as
well as themselves uphold the spirit and letter of the Honor Code.

B. The faculty on its part manifests its confidence in the honor of its students by refraining
from proctoring examinations and from taking unusual and unreasonable precautions to
prevent the forms of dishonesty mentioned above. The faculty will also avoid, as far as
practicable, academic procedures that create temptations to violate the Honor Code.

C. While the faculty alone has the right and obligation to set academic requirements, the
students and faculty will work together to establish optimal conditions for honorable
academic work.

By writing my "magic number" below, I certify that I acknowledge and accept the Honor Code.

(Number)

Prob I # 1 1 # 2 (# 3 1 # 4 1 Total
Score I

I I I I I

Max 1 3 1 4 1 11 1 12 (30

1. (3 points) Type inference

What is the ML type of this function?

fun length n i l = 0
I length (f i r s t : : r e s t) = 1 + length r e s t

2. (4 points) Scoping

What is the difference between static and dynamic scope? Name a language or language
feature that that uses static scope and one that uses dynamic scope.

3. (11 points) Typing and Garbage Collection

Andrew Appel proposed an interesting scheme for representing the run-time type informa-
tion used in garbage collection. There are two parts to his approach. First, the compiler
generates tables that contain the types of global and stack allocated variables. Second,
the compiler generates a compact representation of all the types in the form of a type
graph. This graph contains the parse trees (or parse graphs) of all the types used in the
program. The idea is that together, these two pieces of information should be sufficient
to find the type of a data item at run time.

For example, consider this simple program with one type and one stack allocated variable

TYPE t = RECORD
val : INTEGER;
next: REF t ;

END ;
VAR v: REF t ; (* v is a stack al located variable of type REF t *)

where REF indicates a pointer. At garbage collection time, the collector looks at all the
global variables and stack allocated variables. In this example, that's just the variable
v. Since the collector knows the types of all stack allocated variables, it knows that v
points to an object of type t. Since v is on the stack, the collector knows that the object
v points to is reachable. Using the type table, the collector can determine that the data
pointed to by v has type t . The type graph tells the collector that this object contains
a next field of type REF t, so the collector can follow the next field and mark the next
object as reachable.

(a) (3 points) y h a t problem is this solving? Is the goal here to improve the running time
of programs, reduce the run-time space requirements or programs, provide additional
programming flexibility, or accomplish something else?

(b) (2 points) Would this work better for Lisp, Scheme, or ML? (Don't worry about
polymorphic functions in ML.) Why?

(c) (3 points) Could you use this approach for garbage collecting C programs? If so,
how is way of representing type information and using it at collection time helpful
(in comparison with the way Scheme or Lisp garbage collectors usually work)? What
problem does it not solve?

(d) (3 points) Do you think this will work well for ML program that use polymorphism?
Explain what problem might arise with polymorphism.

4. (12 points) Method Lookup.
Java and C++ use different implementations of method lookup for objects.

(a) (4 points) Suppose a Java program constains a declaration XClass x = new . . .
and invokes XClass method m on object x. Explain how the code for m is found at
run time.

(b) (4 points) If a C++ program calls virtual member function f of object x, how is the
code for f located? Describe the main data structure and briefly explain how it is
used.

(c) (4 points) Describe the trade-off's between the two approaches. Which is more
flexible? Which is more efficient? Why is each one appropriate for the language in
which it is used.

