
Compilers Comprehensive Exam
Fall 2003

This is a 30 minute, closed book exam. Please mark your an-
swers in the blue book.

1. (5 points) Assume we have a statically typed language with polymor-
phic types and type inference (in the style of ML or Haskell). In one
or two sentences explain how a self-application, such as

is typed. Depending on what assumptions you make, you can answer
this question either so that type inference succeeds or that it fads, but
in either case you should pinpoint why it succeeds or fails.

Since f is a funct ion , it has type a -> b f o r some unknowns a and b.
Because f is a l s o t h e argument, f must have type a . The type equation

a - > b = a
has no f i n i t e so lu t ion , but does have i n f i n i t e so lu t ions , which correspond
t o un i f i ca t ion with t h e occurs check (fo r f i n i t e so lu t ions) and without
(f o r i n f i n i t e so lu t ions) .

2. (5 points) Consider the following nested loops (written in C). In one
sentence give one reason an optimizer might choose to transform the
first loop nest into the second. In one sentence give one reason an
optimizer might choose to transform the second loop nest into the
first.

The f i r s t nested loop has the be t t e r cache performance, a s memory
elements a re accessed i n order. The second nested loop has no
dependencies between i t e ra t ions of the inner loop, and so is good f o r
any number of other optimizations (e .g . , ins t ruct ion scheduling).

3. (6 points) Consider the following flex-like specification. Parentheses
are used to show the association of operations and are not part of the
input alphabet.

aa* { return Tokeni;)
~ (~ b) * { return Token2 ;)

ab* c { re turn Token3; }
caa* { return Token4; }

b* aa* (C I E) { return Tokens;)

Show how the following string is partitioned into tokens. Label each
lexeme with the integer of the correct token class.

abcabcaabbaacccabaccbb

abc abc aa bbaac c caba c cbb
3 3 1 5 2 2 2 2

4. (4 points) In one or two sentences explain why an LR(1) parser can
handle the following grammar while a LL(1) parser cannot:

Loop --+ do stmt while expr

1 do stmt until expr

I do stmt forever

A top-down parser must decide which production t o use when it sees the
terminal 'doJ , whereas a bottom-up parser makes t h i s decision only
a f t e r the en t i re right-hand side of the production is on the stack.

5. (10 points) Below are the "action" and "goto" tables for an LR parser.
The "goto" table includes only moves of the parsing automaton on
non-terminals; the moves on terminals are encoded in the shift moves
of the "action" table. The actions should be interpreted as follows:

e s(n) shifts the input and goes to state n.

r(n,T) pops n elements off of the stack and pushes the non-
terminal T onto the stack. An r-action is a reduce move, given
in a non-standard way.

e acc means accept.

e A blank is an error entry.

The non-terminals of the grammar from which these tables were gen-
erated are A, B, and C . No two productions for A have the same
number of symbols on the right-hand side; similarly, all productions
for B and C have different lengths.

What is the grammar from which these tables were produced?

State

0
1
2
3
4
5
6
7
8
9
10
11

got0
A B C
1 2 3

The essence of t h e problem is t o discover what can be on the s tack
when a reduction is about t o happen. One way t o solve t h e problem i s
t o reconstruct t h e parsing DFA from t h e t a b l e and read t h e moves. A
simpler way is t o reason a s follows. I n s t a t e 9 t h e r e is a reduce
move r(3,A), so we know t h e r e is a production A -> XYZ f o r some X , Y,
and Z. How could t h e DFA get i n t o s t a t e 9? It could ge t t he re from a
'goto B J out of s t a t e 6 . Therefore, Z = B. One way t o ge t t o s t a t e 6
is v i a a ' s h i f t b J ac t ion from s t a t e 8, so Y = b. S t a t e 8 is reached
from a goto on a reduce t o A, s o X = A and t h e production is A -> AbB.

The reasoning f o r t h e o ther productions is similar.

