Compilers Comprehensive Exam
Fall 2003

This is a8 30 minute, closed book exam. Please mark your an-
swers in the blue book.

1. (5 points) Assume we have a statlcally typed language with polymor-
phic types and type inference (in the style of ML or Haskell). In one
ar two sentences explain how a sslf-application, such as

FUF)

is typed, Depending on what assumptions you make, you can answer
this question either so that type inference succeeds or that it fails, but
in either cuse you should pinpoint why it succesads or falls,

Binca f ia a function, it has type a -> b for acme unknowune a and b,

Bacause f ie alse the argument, f must have type a. The type equation
a=>hwa

has no finite solution, but does hawve infinite selutiomns, which COrraspond

to unification with the eccurs check {(for finite solutions) amnd without

(far infinite soluticns).

2. (5 points) Consider the following nested loope (written in C). In one
sentence give one resson an optimizer might choose to transform the
first loop nest into the second, In ome sentance give one reason an
optimizer might choose to transform the second loop nest into the
first.

for{li = 0; L < a, i++)
for{] =0; j € b; j++)
AL 03] = ACL)[j+1] * 2;

1

for{j =0; j < b; j+H)
for(i = 0; 1 < &, 1++)
A1 [1] = &[] [§+1] * 2;

Tha first nested loop has the better cache performance, &8 memdry
elaments are acceased in order. The second nasted loop hag no
dependencies between iterations of the inmer loop, and so is good for
any nunber of other optimizaticns {e.g., instruction scheduling).

. [6 points) Comider the following Aex-like specification. Parentheses
wre used to show the assoclation of eperations and are not part of the
input alphabet.

aa® { return Tokenl; }
e(a|b)® { return Token2; }
ab*c { return Token3; }
caa® { return Tokend; }
b*aa*(cle) { return TokenS; }

Show how the following string is partitioned into tokens. Label each
lexeme with the integer of the correct token class,

abcabecaabbaacccabacchh

abe abc aa bbasc ¢ caba ¢ cbb
3 3 4 B 2 2 2 2

{4 points) In one or two sentences explain why an LR(1) parser can
handle the following grammar while a LL{1) parser cannot:

Loop — do stmt while expr
| do stmt until expr
| dio stmt forever

i top-down parser must decide which production to use when it sees the
tarminal ‘do’, whereas a bottom-up parser makes this decision only
after the entire right-hand side of the production is on the stack.

5. {10 points) Balow are the “action” and “goto” tables for an LR parsar.
The “goto” table includes only moves of the parsing automaton on
non-terminalka; the moves on terminals are encoded in the shift mowves
of the "action™ table. The actions should be interpretad aa follows:

¢ a(n) shifts the input and goes to state .

¢ r{n, T} pops n elements off of the stack and pushes the non-
terminal T" onto the skack, An r-action is a reduce move, given
in a non-standard way,
& ace MGANS Accept.
A blank is an error entry.
The non-terminals of the grammar from which these tables were gen-
erated wre A, B, and ©, Mo two productions for A heve the same

numbser of symbols on the right-hand side; similarly, all productions
for B and & heve different lengths

What is the grammar from which these tables were produced?

State action gn!-cr_-
B b C d e ¥ A B C

0 | a(b) e(d) 1 2 3

1 &) T

2 r(l,A) s(T) r(1,A) rilA)

3 r(lLB} r(l,B) r(1,B] r(l1B)

1 | a(5) s(4) 8 2 3

b (1,2} r(1,0) e(1,2) (1,0

6 | s(5) s(4) 9 3

T | s(5) s(4) 10

&8 (6} g(11)

o r(3A) &8lT) (3 A) rl3A)

10 r{3,B) r(3,B) r(3,8) r(3,B)

11 35 rl3,0) r(d,C) r(3,0)

=>» Ab B
-> B
= B e C
-» 0
-*d A8
- B

noooE =

The szsence of the problem ia te discover what can be on the atack
vhen a reductien is absut to heppen. Ome way to solwve the problem ia
to reconstruct the pareing DFA from the table and read the moves. &
gimplar way is te resgon as follows. In state 9 there is a reduce
move r(3, A), =6 we know thers ig A production A -» EYZ for some X, ¥,
and Z. How could the DFA get into atate 97 It conld get there from a
'goto B' out of state 6. Therefore, Z = B. (ne way to get to state &
is via a 'shift b' action from state 3, a0 ¥ = b. State B ia reached
from a goto on a reduce to A, so X = A and the preduction is A -> AbB.

The rnun‘ning for the other productionsa 18 gimilar.

