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Autumn 2003 

1. [lo pts] Prove a tight asymptotic bound on the behavior of T(71) = T(n/3) +T(n/9) + 
n3, where T(n) 5 b for n < no, where no and b are some given constants. For simplicity, 
solve for n being a power of 9. 

Simplest approach is to guess T(n) = Q(n3) and prove by induction. First notice that 
T(n) = fl(n3) just by examining the recurrence. Now assume T(n) 5 en3 for some 
constant c. This constant should be large enough to satisfy initial conditions. Naw the 
inductive step is: 

The claim follows since the expression in the parenthesis is smaller than 1 for large enough 
C. 

2. [lo pts] Given integers a1 , az, . . . , a,, give a randomized algorithm that outputs all 
pairs (i, j )  such that ai = aj. Your algorithm should have expected running time O(n+ K) 
where K is the number of pairs output. Prove the upper bound on the running time. 

Use hashing with chaining, with size of the hash table constant factor larger than n. 
Moreover, construct each chain as a chain of linked lists, each list holding equal elements. 
In other words, if aj hashes into position q, look through the linked list and find the 
list that corresponds to the value of aj. Then, for each element ak of this list, output 
(aj, ah). The claim follows since the expected number of lists attached to a single hash 
cell is constant. 

3. [lo pts] Assume that you are given a 'Lbla~k box" implementation of a comparisons- 
based data structure that supports "extract minimum" and "insert element". You are 
also told that such data structure can be constructed on n elements in time Q(n loglogn). 
Let g(n) be the amortized time it takes to execute "extract min", i.e. extract the smallest 
element from the above data structure and delete it from the data structure. Is it possible 
that g(n) = log log n ? What is the (asymptotically) fastest possible g(n) ? 

By using this black-box, one can sort by building the structure, and using extract-min n 
times. Since total time for sorting in comparisons-only model is R(n1og n), the extraction 
should take at least fl(1og n) amortized per extracted element. 

4. [15 pts] You are given a graph G = (V, E )  with non-negative weights on edges, i.e. 
w : E + R+. You are also told that all weights are distinct, i.e. Yel, e2 E E, el # e2 : 

w(e1) # w(e2). 

(a) [lo pts] Prove that the Minimum Spanning Tree in G is unique. 

(b) [5 pts] Say you succeeded in proving (a). Now assume that you were given tree 
T that is the minimum spanning tree for G with weight w. Explain how to use 
T in order to compute T', which is a minimum spanning tree for G with weights 
~ ' ( e )  = [w(e)I2, Ye E E .  



a. Let T be some MST. Consider Kruskal's MST algorithm executing on the given data 
to construct T'. We will show that T and TI are identical. Assume not. Now let e be 
the "first difference". More precisely, the first edge where Kruskal's decision was different 
from T. Observe that it is not possible that the first differencc is of the form LLKruskal's 
algorithm rejected e, but e is in T". This is due to the fact that up until e, all edges taken 
by Kruskal's algorithm are also in T.  Thus, the only reason Kruskal's algorithm rejected 
e was because it closes a cycle, which means that e can not belong to T either. 

So the only conclusion is that e is not in T but it is in T'. Add e to T and consider the 
created cycle. Note that at lcast one of the edges on this cycle (call it el) was considered 
after el since when e was considered, Kruskal's algorithm acceped it, which means it did 
not close a cycle at that moment. Thus, by adding e and deleting el, we improved the 
weight of T (recall that all weights are different), leading to a contradiction. 

b. Since MST is unique, we can assume that the given tree T was constructed by Kruskal's 
algorithm running on the original weights. Observe that squaring of the weights does not 
change the sorted order of the edges, since all weights are positive. Hence, Kruskal's 
algorithm will still produce T ,  even after the edge weights are squared. 

5. [15 pts] You are given n villages situated along a highway. Let XI, 22 ,  . . . , x, represent 
the positions of these villages on the highway (the highway is a straight line). We need 
to build hospitals in k of these villages. Let di denote the distance from the i-th village 
to the nearest hospital, and let D = dl + d2 + . . . + d,. Our goal is to minimize D. 

(a) [5 pts] Give an efficient algorithm to solve the problem for k = 1. 

(b) [5 pts] Consider an optimum placement for some k. Prove that this optimum 
solution can be viewed as consisting of two optimum solutions for smaller problems, 
where one problem is optimum placement of k - 1 hospitals to cover some villages 
and the other problem is placing a single hospital to cover the rest of the villages. 
State the "smaller problems" completely. 

(c) [5 pts] Give a polynomial time algorithm to find the smallest possible value of D 
for a given k. 

a. Median-index village is the answer to this question. To see this, consider a hospital 
with ql villages to the left of the hospital and qz villages to the right, with n = ql + 1 + qz. 
Now move the hospital one village left, say x miles. All villages on the left improve 
distance by x, while all villages on the right (including the one where the hospital was up 
until now) increase their distance by the same x. Total change in D is -qlx + x + qzx, 
which is a gain as long as ql > qz. 

b. First of all, assume that the villages are sorted with xl being the leftmost and x, being 
the rightmost. If they are not sorted, then sort and rename. 

Since villages are assigned to closest hospital when computing D, the set of villages 
assigned to a specific hospital "has no holes", i.e. if xi and xj are assigned to a specific 
hospital, then all villages between xi and x j  are assigned to the same hospital as well. 

In particular, consider optimum solution, and consider all the villages assigned to the 
rightmost hospital. Per our discussion above, these are villages starting fiom some index 



q + 1 and up to n. The rest of hospitals (k - 1 of them) are covering villages XI through 
x,. We claim that these k - 1 hospitals are the best solution to cover villages XI through 
xg with k - 1 hospitals. If not, then take the better solution, add the k-th hospital with 
its villages, and you will get a better solution than the original optimum one, which is a 
contradiction. 

c. Let D(q,p) be the best way to cover villages XI through x, using p hospitals. Previous 
discussion implies that in order to compute this value, we should compare all values 
D(i, p - 1) + Q(i + 1, q), where Q(s, t )  is the best cost of using a single hospital (in the 
best possible way as per (a)) to cover villages x, through xt. 

Observe that we are looking for D(n, k), which is the answer to the posed question. This 
value can be computed using dynamic programming. First, one can compute D(i,  1) for 
all i using median as in (a). Then one can compute D(i,  2) for all i, D(i, 3), etc. There 
are nk elements in the dynamic programming table, with each taking 0 ( n )  to compute, 
leading to O(n2k) algorithm. 


