
Compilers

CI -. CS Comprehensive Exam: Compilers (30 points)

1. (7 points)

Comments in the C programming language are introduced by the characters /* and termi-
nated by the characters */. They do not nest and they do not occur within string or character
literals. Indicate whether or not each of the following regular expressions describes precisely
the set of all valid C comments. For those that do not, provide a counterexample. Assume
for convenience that the character set is {* , / , a).

(a) /*(/la!*)'*/
Am: no, this expression matches /**/*/.

(b) /*(al/)'*(*la(al/)'*)*/
Am: yes, perhaps most easily seen by constructing a DFA.

(c) /*(aI/)L*(*(a(al/)**)'*/
Am: no, this expression fails to match /**/.

2. (8 points)
The following grammar generates all regrrlar e Y K p d 0 ~ over the alphabet (a, b):

where '+' denotes 'or'. Unary * has highest precedence, followed by concatenation; disjunction
has the lowest precedence. All operators are lefk associative.

(a) Show that the grammar is ambiguous.
Two leftmost derivations of crbo are:

(b) Construct an equivalent unambiioua grammar that edorcea the CO- operator prece
dence and associativity.

R -., R+T
R -., T
T TF
T + F
F - F
F -* (El
F - , a
F - , b

(c) Eliminate any left-recursive productions and productions with common prefixes from
your grammar in (b).

3. (4 points) What is meant by structuml equivalence and name equivalence of types? Is one
more restrictive than the other? Is one easier for a compiler to check than the other?

Two type expressions are structurally equivalent if they are the same basic type (e.g., in-
teger or character), or if they are formed by applying the same constructor to structurally
equideat types (e.g., pointez(Tl), pointer(Ta), where TI and Ta are structurally equivalent
types). When type expressions can be named, two type expressions are name equivalent pre
cisely when they are identical. Name equivalence is more restrictive, and implies structurd
equivalence. Two types may be stmcturally equivalent but not name equivalent.

Checking expressions for name equivalence is particularly simple. Structural equivalence is
defined recursively, so a compiler may check the types recursively. Alternatively, a compound
type may be encoded explicitly as a type attribute to facilitate equivalence checking. In
general, checking structural equivalence r e q h more work.

4. (11 points)

Suppose you are asked to extend the C programming language to allow overloading of user-
deiined functions, based on the number of formal parameters and their types.

Answer the following questions as bridy, yet cleariy, as you cas. We are more interested in
abstract operations (e.g., %tore 2 in a table, dong with its sizen) than in implementation
details (e.g., Yor performance, implement the table with a doubly-linked list of AVL trees").

(a) How can a compiler keep track of the parameters and their types? Describe what should
be recorded when a function declaration is processed.

We'll assume that types are represented in the compiler as pointers to structures, called
decls, where each decl represents a type. Well also assume that names are associated

with'types, variables, etc., using a scoped symbol table. A symbol table entry for a
user-defined function will bind a function name to a list of its function decls.
When the compiler begins processing a function declaration, it creates a decl to rep-
resent the function type that contains the function name, return type, the names and
types of its formal parameters, and other relevant information. The compiler creates a
new scope and dedares the formals in it, then processes the function body in yet another
new enclosed scope. After processing the function body, the 'formals' scope can be saved
in the decl, say as a list of (name, type) pairs. The function decl is then added to the
decl list in the symbol table entry for the function's name.

(b) How can a compiler determine which function to invoke in a procedure call? Describe
what and how information can be retrieved when resolving a procedure call.

The compiler must determine the number and types of the actuals, and compare them
with the formals lists stored in the symbl table in the list of function decls. A simple-
minded way to do this is to construct a list of actuals types and then look for a match
with one of the formals lists stored in the function's type decls in the symbol table.
If a match is found, the compiler should check that the matched function declaration
has a valid return type for the 4. Otherwise the compiler should issue a type error
message.

(c) Describe type errors that can occur as a result of this language extension, and how a
compiler can detect them.

A couple of type errors that can arise are unresolvable function declarations (e.g., C
uses structural equivalence for all types except structures, unions, and enumerations,
so structurally equivalent formals are not Merentiable), and a fnnction call that does
not match any function declaration, either because the number of arguments does not
match, or the types do not match.
Before adding a function type decl to the decl list in a symbol table entry for the
function name, the compiler should verify that the declaration is resolvable by the formals
list. This can be accomplished by comparing the saved formals list in the function decl
with the formals lists of all previously declared functions with the same name. If two
formals lists cannot be resolved, the compiler should issue a type error message.

