
Transactional Execution of Java Programs

Brian D. Carlstrom, JaeWoong Chung, Hassan Chafi, Austen McDonald, Chi Cao Minh
Lance Hammond, Christos Kozyrakis, and Kunle Olukotun

Computer Systems Laboratory
Stanford University

{bdc, jwchung, hchafi, austenmc, caominh, lance, kozyraki, kunle}@stanford.edu

ABSTRACT
Parallel programming is difficult due to the complexity of
dealing with conventional lock-based synchronization. To
simplify parallel programming, there have been a number
of proposals to support transactions directly in hardware
and eliminate locks completely. Although hardware support
for transactions has the potential to completely change the
way parallel programs are written, initially transactions will
be used to execute existing parallel programs. In this pa-
per we investigate the implications of using transactions to
execute existing parallel Java programs. Our results show
that transactions can be used to support all aspects of Java
multithreaded programs. Moreover, the conversion of a
lock-based application into transactions is largely straight-
forward. The performance that these converted applications
achieve is equal to or sometimes better than the original
lock-based implementation.

Categories and Subject Descriptors
C.5.0 [Computer Systems Implementation]: General;
D.1.3 [Programming Techniques]: Concurrent Program-
ming – parallel programming; D.3.3 [Programming Lan-
guages]: Language Constructs and Features – concurrent
programming structures

General Terms
Performance, Design, Languages

Keywords
Transactions, feedback optimization, multiprocessor archi-
tecture

1. INTRODUCTION
Processor vendors have exhausted their ability to improve

single-thread performance using techniques such as simply
increasing clock frequency [41, 2]. Hence they are turning

en masse to single-chip multiprocessors (CMPs) as a realis-
tic path towards scalable performance for server, embedded,
and even desktop platforms [22, 20, 34, 5]. While paral-
lelizing server applications is straightforward with CMPs,
parallelizing existing desktop applications is much harder.

Traditional multithreaded programming focuses on using
locks for mutual exclusion. By convention, access to shared
data is coordinated through ownership of one or more locks.
Typically a programmer will use one lock per data structure
to keep the locking protocol simple. Unfortunately, such
coarse-grained locking often leads to serialization on high-
contention data structures. On the other hand, finer-grained
locking can improve concurrency, but only by making code
much more complex. With such code, it is often easy to end
up in deadlock situations.

Transactional memory has been proposed as an abstrac-
tion to simplify parallel programming [16, 36, 17, 14]. Trans-
actions eliminate locking completely by grouping sequences
of object references into atomic execution units. They pro-
vide an easy-to-use technique for non-blocking synchroniza-
tion over multiple objects, because the programmers can
focus on determining where atomicity is necessary, and not
the implementation details of synchronization. Although
transactional memory has the potential to change the way
parallel programs are written, initially transactions will be
used to execute existing parallel programs. To understand
issues associated with executing existing parallel programs
using transactional memory, we investigate how Java paral-
lel programs interact with hardware-supported transactional
memory that provides continuous transactions. There have
been several recent proposals that can support continuous
transactions such as Transactional Coherence and Consis-
tency (TCC), Unbounded Transactional Memory (UTM),
and Virtual Transactional Memory (VTM) [13, 4, 33].

Our general approach of executing Java parallel programs
with hardware transactional memory is to turn synchro-

nized blocks into atomic transactions. Transactions pro-
vide strong atomicity semantics for all referenced objects,
providing a natural replacement for critical sections defined
by synchronized. The programmer does not have to iden-
tify shared objects a priori and follow disciplined locking
and nesting conventions for correct synchronization. Stud-
ies show that this is what programmers usually mean by
synchronized in Java applications [9]. Optimistic execu-
tion of transactions provides good parallel performance in
the common case of non-conflicting object accesses, with-
out the need for fine-grain locking mechanisms that further
complicate correctness and introduce significant overhead.



The paper makes the following contributions:

• We show how hardware transactional memory can sup-
port all aspects of Java multithreaded programming,
including synchronized blocks, native methods, syn-
chronization on condition variables, and I/O state-
ments. We show how existing Java applications can
be run with few, if any, changes to the program.

• We demonstrate the results of running parallel Java
programs, showing how our transactional execution
matches or exceeds the performance of the original
lock-based versions.

The rest of the paper is organized as follows. Section 2
provides an architectural overview of continuous transac-
tional execution models. Section 3 describes running Java
applications with transactions. In Section 4, we evaluate
the performance of transactional Java programs. Section 5
discusses related work, and we conclude in Section 6.

2. CONTINUOUS TRANSACTIONAL
ARCHITECTURES

The particular variant of transactional memory we con-
sider in this paper is continuous transactions. Continu-
ous transactional architectures provide hardware support for
transactional memory in a shared-memory multiprocessor.
Each thread consists of a sequence of transactions, where
each transaction is a sequence of instructions guaranteed to
execute and complete only as an atomic unit. As opposed
to earlier hardware transactional memory proposals, there
is no execution outside of transactions. The processors exe-
cute transactions, enforce atomicity, and maintain memory
consistency and cache coherence only at transaction bound-
aries, when object updates are propagated to shared mem-
ory. By using the continuous transactional model, we hope
to uncover a wider range of issues than would be found in a
system that only uses transactions a fraction of the time.

Each processor follows a cycle of transaction execution,
commit, and potential re-execution. Each transaction is
executed speculatively, assuming it operates on data that
is disjoint from transactions running concurrently on other
processors. Writes are buffered locally, and do not update
shared memory before the transaction commits. Transac-
tions are considered indivisible if they are supporting a pro-
grammer defined notion of atomicity or divisible if they can
be split as needed by the hardware. For example, if an in-
divisible transaction exceeds its processor’s cache capacity,
its write-set overflow can be managed by software buffer-
ing [16, 14] or lower levels of the memory hierarchy [10, 4,
33] whereas a divisible transaction can be split as needed by
a commit.

When a transaction commits, it communicates its write-
set to the rest of the system. Other processors determine
when they have speculatively read data that has been mod-
ified by another transaction. These data dependency viola-
tions trigger re-execution to maintain atomicity, usually of
the other processor’s current transaction, but potentially of
the committing processor. Hardware guarantees that trans-
action commits are seen by all processors in the same order,
so commits are always globally serialized. Some systems al-
low programmer specified ordering of transaction commits
to support such features as loop speculation and speculat-
ing through barriers. Systems that only support unordered

transactions sometimes require transactions to commit from
oldest to youngest to ensure forward progress which could
lead to load balancing issues. Some systems simply favor
older transactions when a data dependency violation is de-
tected. Other systems simply allow transactions to com-
mit on a first come, first served basis, addressing forward
progress through other mechanisms.

Transactional buffering and commit provide atomicity of
execution across threads at hardware speeds. A multithread-
ed language like Java can build on these mechanisms to pro-
vide non-blocking synchronization and mutual exclusion ca-
pabilities, as we explain in Section 3.

3. RUNNING JAVA WITH TRANSACTIONS
In this section we explain how the concurrency features

of the Java programming language are mapped to a trans-
actional execution model in order to run existing Java pro-
grams with a continuous transactional execution model. In
the course of our explanation, we discuss how transactions
interact with the Java Memory Model, the Java Native In-
terface, non-transactional operations, and exceptions.

3.1 Mapping Java to Transactions
In this section we discuss how various existing Java con-

structs are mapped into transactional concepts.

synchronized blocks
When running with a transactional memory model, syn-

chronized blocks are used to mark indivisible transactions
within a thread. Since continuous transactional hardware
runs code in transactions at all times, a synchronized block
defines three transaction regions: the divisible transactions
before the block, the indivisible transaction within the block,
and the divisible transactions after the block. Similarly, ac-
cesses to volatile fields are considered to be small indi-
visible transactions. As an example, consider the simple
program shown in Figure 1. This program creates an indi-
visible transaction separated by other divisible transactions
by commit points as shown.

When synchronized blocks are nested, either within a
method or across method calls, only the outermost syn-

chronized block defines an indivisible transaction. This is
referred to as a closed nesting model [28]. As an example,
consider the simple program shown in Figure 2. This pro-
gram also creates a single indivisible transaction as shown.

Handling nested transactions is important for composabil-
ity. It allows the atomicity needs of a caller and callee to be
handled correctly without either method being aware of the
other’s implementation. The block structured style of syn-
chronized is fundamental to this, as it ensures that transac-
tion begins and ends are properly balanced and nested. Sim-
ply exposing a commit method to programmers would allow
a library routine to commit arbitrarily, potentially breaking
the atomicity requirements of a caller.

While nested transactions are necessary for composabil-
ity, the run-time flattening into a single transaction simpli-
fies execution, making the common case fast. The database
community has explored alternatives, including nested trans-
actions allowing partial rollback. Evaluating the need for
and implementing such alternatives is beyond the scope of
this paper.

Although synchronized blocks are used to mark indi-
visible transactions, the actual lock object specified is not



public static void main(String[] args){

a();

synchronized(x){

b();}

c();}

a(); // divisible transactions

COMMIT();

b(); // indivisible transaction

COMMIT();

c(); // divisible transactions

COMMIT();

Figure 1: Converting a synchronized block into transactions.

public static void main(String[] args){

a();

synchronized(x){

b1();

synchronized(y){

b2();}

b3();}

c();}

a(); // divisible transactions

COMMIT();

b1(); //

b2(); // indivisible transaction

b3(); //

COMMIT();

c(); // divisible transactions

COMMIT();

Figure 2: Converting nested synchronized blocks into transactions.

used. That is because the continuous transactional hard-
ware will detect any true data dependencies at runtime. In
a purely transactional variant of Java, one can imagine re-
placing synchronized blocks with a simpler atomic syntax
omitting the lock variable as is done in other systems [14, 3,
7]. In such a system, programmers would not need to create
a mapping between shared data and the lock objects that
protect them.

The fact that the lock variables are not used points to a
key advantage of transactions over locks. In Java without
transactions, there is not a direct link between a lock object
and the data it protects. Even well intentioned programs can
mistakenly synchronize on the wrong object when accessing
data. With transactions, all data accesses are protected,
guaranteeing atomic semantics in all cases. There is no rea-
son for basic data structures to provide any synchronization,
because the caller defines its own atomicity requirements.
Hence, programmers can write data structures without re-
sorting to complex fine grained locking schemes to minimize
the length of critical sections.

For example, the evolution of Java collections shows how
locking can complicate one of the most basic data structure
classes: the hash table. Java’s original Hashtable used syn-

chronized to guarantee internal consistency, which is impor-
tant in a sandbox environment. However, in JDK 1.2, a sim-
pler non-locking HashMap was introduced, since most appli-
cations needed to avoid the overhead of the implicit locking
of the original Hashtable. Recently, JDK 1.5 has compli-
cated matters further by adding a ConcurrentHashMap that
allows multiple concurrent readers and writers.

A transactional memory model eliminates the need for
this kind of complexity in the common case. Consider the
simple string interning example in Figure 3. With transac-
tional execution, there is no need to use anything other than
the original simple Hashtable. Concurrent reads happen in
parallel due to speculation. Even non-conflicting concurrent
writes happen in parallel. Only conflicting and concurrent
reads and writes cause serialization and this is handled au-
tomatically by the system, not the programmer.

Traditionally, users of synchronized blocks are encour-
aged to make them as short as possible to minimize blocking
other threads’ access to critical sections. The consequences
of making the critical section too large is that processors

often spend more time waiting and less time on useful work.
At worst, it can lead to complete serialization of work. Con-
sider the example code in Figure 4. Because of the way this
code is written with a synchronized block around the en-
tire routine, a multithreaded web server becomes effectively
single threaded, with all requests pessimistically blocked on
the sessions lock even though the reads and writes are
non-conflicting. Because a transactional system can simply
optimistically speculate through the lock, it does not have
this serialization problem.

wait, notify, notifyAll
When threads need exclusive access to a resource, they use
synchronized blocks. When threads need to coordinate
their work, they use wait, notify, and notifyAll. Typ-
ically, these condition variable methods are used for imple-
menting producer-consumer patterns or barriers.

Consider the example of a simple producer-consumer us-
age of wait and notifyAll derived from [6] shown in Fig-
ure 5 and in Figure 6. This code works in a non-transactional
system as follows. When a consumer tries to get the con-

tents, it takes the lock on the container, checks for contents
to be available, and calls wait if there is none, releasing
the lock. After returning from wait, the caller has reac-
quired the lock but has to again check for contents to be
available since another consumer may have taken it. Once
the data is marked as taken, the consumer uses notifyAll

to alert any blocking producers that there is now space to
put a value. An analogous process happens for producers
with put.

In a transactional system, the get method is synchro-

nized so the method is run as an indivisible transaction. If
there is no data available and we need to wait, we com-
mit the transaction as if the synchronized block was closed.
This is keeping analogous to the semantics of wait releas-
ing the lock and making updates visible. When the thread
returns from waiting, we start a new indivisible transaction.

Because we commit on wait, we also are committing state
from any outer synchronized blocks, potentially breaking
atomicity of nested locks. One alternative considered was
using rollback, since that would preserve the atomicity of
outer synchronized blocks and works for most producer-
consumer examples. However, many commonly used pat-



String intern(){

synchronized(map){

Object o=map.get(this);

if (o!=null){

return (String)o;}

map.put(this,this);

return this;}}

Figure 3: A string interning example.

void handleRequest(String id, String command){

synchronized(sessions){

Session s=sessions.get(id);

s.handle(command);

sessions.put(id,s);}}

Figure 4: Synchronizing on a Session object.

synchronized int get(){

while (available == false) wait();

available = false;

notifyAll();

return contents;}

Figure 5: get code used by the consumer.

synchronized void put(int value){

while (available == true) wait();

contents = value;

available = true;

notifyAll();}

Figure 6: put code used by the producer.

terns for barriers would not work with rollback. Rollback
prevents all communication, but the existing Java semantics
of wait are to release a lock and make any changes visible.
This loss of atomicity in outer synchronized blocks because
of nesting is a common source of problems in existing Java
programs as well [35].

Fortunately, the nesting of wait in synchronized blocks
is rare, since it causes problems in existing Java programs
as well. Java programmers are advised not to place calls
to wait within nested synchronized blocks because when a
thread waits, it retains all but one lock while it is asleep [35].
By their very nature, condition variables are used to coor-
dinate the high-level interactions of threads, so it is rare for
them to be used deeply in library routines. For example,
a survey of the Apache Jakarta Tomcat web server version
5.5.8 does not reveal any wait calls nested within an outer
synchronized block. Tomcat does have libraries for pur-
poses such as producer-consumer queuing that include uses
of wait on an object with a corresponding synchronized

block on the same object, but they are used only for high-
level dispatching and not called from synchronized blocks
on other objects. A further example is in SPECjbb2000,
which has one example of a barrier where committing works
and rollback would fail.

The handling of wait is the thorniest problem in the trans-
actional execution of Java programs. If we treat wait as a
rollback, we have composable transactional semantics but
existing programs will not run. If we treat wait as a com-
mit, it is easy to come up with contrived programs that will
not match the previous semantics. However we have never
seen a benchmark or system that exhibits a problem treat-
ing wait as commit. In a programming language built with
transactions in mind, the rollback semantics would make
more sense; all of the problematic examples requiring com-
mit could be rewritten to use rollback semantics.

3.2 Impact of Transactions on Java
In this section we discuss how transactions relate to sev-

eral aspects of the Java programming language.

Java Memory Model
A new Java memory model was recently adopted to better
support various shared memory consistency models [1, 30,

19]. The new model has been summarized in [14] as follows:

if a location is shared between threads, either:

(i). all accesses to it must be controlled by a
given mutex, or

(ii). it must be marked as volatile.

These rules, while simplified, are an excellent match for
transactional execution. The Java memory model ties com-
munication to synchronized and volatile code. In our
system, these same constructs are used to create indivisible
transactions working with shared data.

Run-time violation detection can be used to detect pro-
grams that violate these rules, an advantage of continuous
transactional execution with “always on” violation detec-
tion. For example, a divisible transaction might be violated,
indicating that a location is shared between threads with-
out being protected by a synchronized block or volatile

keyword. Alternatively, an indivisible transaction can be vi-
olated by divisible transaction. These typically unexpected
violations could be logged or additional extensions could al-
low the program to respond to exceptional cases.

Java Native Interface
The Java Native Interface (JNI) allows Java programs to
call methods written in other programming languages, such
as C [25]. Software transactional memory systems typically
forbid most native methods within transactions [14]. This is
because those systems only can control the code compiled by
their JIT compiler and not any code within native libraries.
While some specific runtime functions can be marked as
safe or rewritten to be safe, this places a lot of runtime
functionality in the non-transactional category.

This limitation of software transactional memory systems
destroys the composability and portability of Java software
components. Code within synchronized blocks cannot call
methods without understanding their implementation. For
example, an application using JDBC to access a database
needs to know if the driver uses JNI. Even “100% Pure Java”
drivers may use java.* class libraries that are supported by
native code. Therefore, code carefully written to work on
one Java virtual machine may not work on another system,
since the language and library specifications only consider



nativeness to be an implementation detail, and not part of
the signature of a method.

On the other hand, hardware transactional memory sys-
tems do not suffer from this limitation, since they are source-
language neutral. Transactions cover memory accesses both
by Java and native code. This allows programmers to treat
code that traverses both Java and native code together as a
logical unit, without implementation-specific restrictions.

Non-transactional operations
Certain operations are inherently non-transactional, such as
I/O operations. Many transactional memory systems simply
consider it an error to perform a non-transactional operation
within a transaction. This certainly would prevent correct
execution of existing Java programs.

Continuous transactional architectures might seem to pose
an extra challenge because of their “all transactions, all the
time” nature. However, divisible transactions can handle
non-transactional operations by implicitly committing be-
fore the operation so there is no memory state to be vio-
lated and cause a rollback. Since these code regions do not
guarantee atomicity, it is legal to freely commit their results
at any point. There are a variety of approaches to the more
difficult case of non-transactional operations in indivisible
transactions.

A simple approach is to allow only one indivisible transac-
tions to run non-transactional operations at a time. Other
transactions that do not need to run non-transactional op-
erations may continue to execute in parallel, but cannot
commit. Once the indivisible transactions that performed
the non-transactional operation commit, other transactions
may then commit or begin their own non-transactional op-
erations. This approach generally works with current Java
programs. In contrast, the other, more advanced approaches
presented below require changes in applications, libraries, or
the underlying runtime. In this study we have taken this
simple approach.

Another approach to non-transactional operations is to
require that the operations be moved outside of indivisi-
ble transactions. For example, an HTTP server can read a
request from the network interface into memory, use trans-
actions as it likes, producing a response buffered to memory,
and finally write the response to the network after the trans-
actions have committed. However, manually restructuring
code in this way is undesirable. Modular systems are built
on composable libraries. We need a general way to address
non-transactional operations without disturbing the logical
structure of code.

A more programmer-friendly way to implement this struc-
ture is with changes to the runtime system. Non-transact-
ional operations within indivisible transactions are recorded
at each call but only performed at commit time using trans-
action callbacks, a common solution in traditional database
systems. For example, a logging interface for debugging
typically prints messages as they are received. A transac-
tional runtime implementation could buffer the messages in
a thread local variable when running in an indivisible trans-
actional after registering a commit callback. Only when
the original, indivisible transaction commits is the callback
called to write out the buffered messages. This is a rela-
tively simple pattern that can generally be applied to library
code. For convenience, a reusable wrapper class can be used
for such common cases as buffering stream output. In a

transactional runtime, this functionality could be built into
the standard BufferedOutputStream and BufferedWriter

classes, allowing most output code to work without modifi-
cation. While commit handlers are useful for delay output,
rollback handlers can be used for some cases of reverting
input. However, with the combination of rollback handlers
and transactional memory this is problematic because when
the transaction rolls back, the registration of the handler it-
self could be rolled back. We will describe a possible solution
to this issue in Section 5.

There are several classes of non-transactional operations.
Most non-transactional operations are concerned with I/O.
However, some operations, such as asking for the current
time, may be deemed safe for use within transactions with-
out being considered “non-transactional” operations. An-
other common non-transactional operation in our current
model is thread creation. Although alternative and more
complex models could support rolling back of thread cre-
ation, this is of little practical value. As in the above exam-
ple of nesting barriers within existing transactions, it seems
better to consider thread creation a high-level operation that
rarely occurs within deep nesting of synchronized blocks.

Exceptions
We treat transactions and exceptions as orthogonal mech-
anisms. Most exceptions in practice are IOExceptions or
RuntimeExceptions. Since we would not be able to guar-
antee the rollback of non-transactional operations, our ex-
ception handling follows the flow of control as expected by
today’s Java programmers. Figure 7 illustrates an example.
If no exceptions are thrown, the code produces the transac-
tions shown in Figure 8. On the other hand, if b2() throws
an IOException and e2() throws a RuntimeException, the
code is equivalent to Figure 9. This is exactly the same
control flow as current Java exception handling.

4. PERFORMANCE EVALUATION
In this section we compare the performance of existing

Java programs running on a traditional multi-processor us-
ing snoopy cache coherence and the same applications con-
verted to run on a continuous transactional multi-processor.
We discuss the Java virtual machine and simulator used for
evaluation, describe the benchmarks performed, and discuss
the results.

4.1 Environment
We evaluated programs using JikesRVM with the fol-

lowing changes. The scheduler was changed to pin threads
to processors and not migrate threads between processors.
Methods were compiled before the start of the main pro-
gram execution. The garbage collector was disabled and a
one gigabyte heap was used. When running transactionally,
synchronized blocks and methods were run transactionally
and Object.wait() was changed to perform a transaction
commit. The results focus on benchmark execution time,
skipping virtual machine startup.

JikesRVM was run with an execution-driven simulator of
a PowerPC CMP system that implements the TCC contin-
uous transaction architecture as well as MESI snoopy cache
coherence for evaluating locking [27]. All instructions, ex-
cept loads and stores, have a CPI of 1.0. The memory sys-
tem models the timing of the L1 caches, the shared L2 cache,
and buses. All contention and queuing for accesses to caches



try {

a();

synchronized(x){

b1();

b2();

b3();}

c();}

catch (IOException e) {

d();

synchronized(y){

e1();

e2();

e3();}

f();}

finally {

g();}

Figure 7: A try-catch construct
containing synchronized blocks.

a(); // try

COMMIT();

b1(); //

b2(); // try

b3(); //

COMMIT();

c(); // try

COMMIT();

g(); // finally

COMMIT();

Figure 8: Runtime transactions
created by the non-exception
case from code in Figure 7.

a(); // try

COMMIT();

b1(); //

b2(); // IOException

COMMIT();

d(); // catch

COMMIT();

e1(); //

e2(); // RuntimeException

COMMIT();

g(); // finally

COMMIT();

Figure 9: Runtime transactions
created by the exception case
from code in Figure 7.

Feature Description

CPU 1–16 single-issue PowerPC cores

L1 64-KB, 32-byte cache line, 4-way associative, 1 cycle latency

Victim Cache 8 entries fully associative

Bus Width 16 bytes

Bus Arbitration 3 pipelined cycles

Transfer Latency 3 pipelined cycles

L2 Cache 8MB, 8-way, 16 cycles hit time

Main Memory 100 cycles latency, up to 8 outstanding transfers

Table 1: Parameters for the simulated CMP architecture. Bus width and latency parameters apply to both
commit and refill buses. L2 hit time includes arbitration and bus transfer time.

and buses is modeled. In particular, the simulator models
the contention for the single data port in the L1 caches,
which is used for processor accesses and commits for transac-
tions or cache-to-cache transfers for MESI. Table 1 presents
the main parameters for the simulated CMP architecture.
The victim cache is used for recently evicted data from the
L1 cache.

4.2 Results
To evaluate running Java with hardware transactional

memory, we ran a collection of benchmarks, as summarized
in Table 2, using both locks and transactions. The single-
processor version with locks is used as the baseline for cal-
culating the percentage of normalized execution time, with
a lower percentage indicating better performance. The ex-
ecution time is broken down into five components. Useful
time is for program instruction execution. L1 Miss time re-
sults from stalls on loads and stores. When running with
locks, Idle/Sync time is due to the synchronization over-
head. When running with transactions, Commit time is
spent committing the write-set to shared memory, and Vi-
olation time is the time wasted from data dependency vio-
lations.

The micro-benchmarks are based on recent transactional
memory papers from Hammond [11] and Harris [14]. For a
server benchmark we included SPECjbb2000 [38], while for
numerical benchmarks we included the multi-thread Java

Grande kernels and applications [18]. For each benchmark,
we provide a description of its conversion to transactions.

TestHistogram
TestHistogram is a micro-benchmark to demonstrate trans-
actional programming from Hammond [11]. Random num-
bers between 0 and 100 are counted in bins. When running
with locks, each bin has a separate lock to prevent concur-
rent updates. When running with transactions, each update
to a bin is one transaction.

Figure 10 shows the results from TestHistogram. While
the locking version does exhibit scalability over the sin-
gle processor baseline, the minimal amount of computation
results in significant overhead for acquiring and releasing
locks, which dominates time spent in the application. The
transactional version eliminates the overhead of locks and
demonstrates scaling to 8 CPUs; transactions allow opti-
mistic speculation while locks caused pessimistic waiting.
However, at 16 CPUs the performance of the transactional
version levels off, because data dependency violations start
to become more frequent with this number of bins.

TestHashtable
TestHashtable is a micro-benchmark that compares differ-
ent java.util.Map implementations. Multiple threads con-
tend for access to a single Map instance. The threads run a
mix of 50% get and 50% put operations. We vary the num-



Benchmark Description Source Input

TestHistogram create histogram of student test scores Hammond [11] 80,000 scores
TestHashtable multithreaded Map read and write Harris [14] 4,000 get(), 4,000 put()

TestCompound multithreaded Map value swaps Harris [14] 8,000 swaps
SPECjbb2000 Java Business Benchmark SPEC [38] 368 transactions
Series Fourier series Java Grande [18] 100 coefficients
LUFact LU factorization Java Grande [18] 500x500 matrix
Crypt IDEA encryption Java Grande [18] 300,000 bytes
SOR sucessive over relaxation Java Grande [18] 100x100 grid
SparseMatmult sparse matrix multiplication Java Grande [18] 5000x5000 matrix
MolDyn N-body molecular dynamics Java Grande [18] 256 particles, 10 iterations
MonteCarlo financial simulation Java Grande [18] 160 runs
RayTracer 3D ray tracer Java Grande [18] 16x16 image

Table 2: Summary of benchmark applications

ber of processors and measure the speedup attained over the
single processor case.

When running with locks, we run the original synchro-
nized Hashtable, a HashMap synchronized using the Collec-
tions class’s synchronizedMap method, and a Concurren-

tHashMap from util.concurrent Release 1.3.4 [24]. Hash-

table and HashMap use a single mutex, while Concurren-

tHashMap uses finer grained locking to support concurrent
access. When running with transactions, we run each HashMap

operation within one transaction.
Figure 11 shows the results from TestHashtable. The

results using locks for Hashtable (HT) and HashMap (HM)
show the problems of scaling when using a simple critical sec-
tion on traditional multi-processors. The synchronizedMap

version of HashMap actually slows down as more threads are
added while Hashtable only gets a very small improvement
up to 8 processors and a slowdown at 16 processors. While
ConcurrentHashMap (CHM Fine) shows that fine-grained
locking implementation is scalable, this implementation re-
quires significant complexity. With transactions, we can use
the simple HashMap with the same critical region as Concur-
rentHashMap and achieve similar performance.

TestCompound
TestCompound is a micro-benchmark that compares the same
Map implementations as TestHashtable. Again the threads
contend for access to a single object instance, but this time
instead of performing a single atomic operation on the shared
instance, they need to perform four operations to swap the
values of two keys. We perform two experiments that demon-
strate both low-contention and high-contention scenarios:
the low-contention case uses a 256 element table and the
high-contention case uses an 8 element table.

We use the same basic Map implementations as with Test-

Hashtable. For Hashtable and HashMap, our critical section
uses the Map instance as the lock. For ConcurrentHashMap,
we use two variations of the benchmark representing coarse-
grained locking and fine-grained locking. The coarse-grained
locking variation uses the Map instance as a lock, as with
Hashtable and HashMap. The fine-grained locking variation
uses the keys of the values being swapped as locks, being
careful to order the acquisition of the locks to avoid dead-
lock.

The left side of Figure 12 shows the results of Test-

Compound with low contention for locks. Again, running
Hashtable and HashMap with simple locking show the prob-

lems of simple locking in traditional systems. Furthermore,
the coarse-grained version of ConcurrentHashMap (CHM Coarse)
demonstrates that simply getting programmers to use data
structures designed for concurrent access is not sufficient to
maximize application performance. With locking, the appli-
cation programmer must understand how to use fine-grained
locking in their own application to properly take advantage
of such data structures. As we continue to increase the num-
ber of threads, these applications with coarse-grained locks
do not continue to scale, and, as shown, often perform worse
than the baseline case. Only fine-grained version of Concur-
rentHashMap compares favorably with transactions. Trans-
actions have a performance advantage due to speculation.
More importantly, transactions are able to beat the perfor-
mance of fine-grained locks using only the most straight-
forward code consisting of a single synchronized block and
the unsynchronized HashMap. Hence, transactions allow pro-
grammers to write simple code focused on correctness that
performs better than complex code focused on performance.

The right side of Figure 12 shows the results of Test-

Compound with high contention for locks. The locking ver-
sion of Hashtable, HashMap, and coarse-grained Concurren-

tHashMap all perform similarly to the low contention case.
Fine-grained ConcurrentHashMap and transactional perfor-
mance are both degraded from the low-contention case be-
cause of lock contention and data dependency violations.
However, in this especially tough case, transactions manage
to beat out locks by the largest margin seen in all of these
results.

SPECjbb2000
SPECjbb2000 is a server-side Java benchmark, focusing on
business object manipulation. I/O is limited, with clients
replaced by driver threads and database storage replaced
with in-memory binary trees. The main loop iterates over
five application transaction types: new orders, payments, or-
der status, deliveries, and stock levels. New orders and pay-
ments are weighted to occur ten times more often than other
transactions and the actual order of transactions is random-
ized. We ran using the default configuration that varies the
number of threads and warehouses from 1 to 16, although we
measured for a fixed number of 368 application-level trans-
actions instead of a fixed amount of wall clock time. The
first part of Figure 13 shows the results from SPECjbb2000.
Both locking and transactional versions show linear speedup
in all configurations because there is very little contention



0

10

20

30

40

50

60

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

(%
)

Violation
Commit/Communication
Idle/Sync
L1Miss
Useful

Figure 10: TestHistogram

0

20

40

60

80

100

120

140

160

180

200

H
M

-2

H
T-

2

C
H

M
 F

in
e-

2

Tr
an

s.
 H

M
-2

H
M

-4

H
T-

4

C
H

M
 F

in
e-

4

Tr
an

s.
 H

M
-4

H
M

-8

H
T-

8

C
H

M
 F

in
e-

8

Tr
an

s.
 H

M
-8

H
M

-1
6

H
T-

16

C
H

M
 F

in
e-

16

Tr
an

s.
 H

M
-1

6

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

(%
)

Useful L1Miss Idle/Sync Commit/Communication Violation

Figure 11: TestHashtable

0

50

100

150

200

250

H
M

-2
H

T-
2

C
H

M
 C

oa
rs

e-
2

C
H

M
 F

in
e-

2
Tr

an
s.

 H
M

-2
H

M
-4

H
T-

4
C

H
M

 C
oa

rs
e-

4
C

H
M

 F
in

e-
4

Tr
an

s.
 H

M
-4

H
M

-8
H

T-
8

C
H

M
 C

oa
rs

e-
8

C
H

M
 F

in
e-

8
Tr

an
s.

 H
M

-8
H

M
-1

6
H

T-
16

C
H

M
 C

oa
rs

e-
16

C
H

M
 F

in
e-

16
Tr

an
s.

 H
M

-1
6

H
M

-2
H

T-
2

C
H

M
 C

oa
rs

e-
2

C
H

M
 F

in
e-

2
Tr

an
s.

 H
M

-2
H

M
-4

H
T-

4
C

H
M

 C
oa

rs
e-

4
C

H
M

 F
in

e-
4

Tr
an

s.
 H

M
-4

H
M

-8
H

T-
8

C
H

M
 C

oa
rs

e-
8

C
H

M
 F

in
e-

8
Tr

an
s.

 H
M

-8
H

M
-1

6
H

T-
16

C
H

M
 C

oa
rs

e-
16

C
H

M
 F

in
e-

16
Tr

an
s.

 H
M

-1
6

low contention high contention

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

(%
)

Useful L1Miss Idle/Sync Commit/Communication Violation

Figure 12: TestCompound



0

10

20

30

40

50

60

70
Lo

ck
s-

2
Tr

an
s.

-2
Lo

ck
s-

4
Tr

an
s.

-4

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

Lo
ck

s-
2

Tr
an

s.
-2

Lo
ck

s-
4

Tr
an

s.
-4

SPECjbb2000 Series SparseMatmult LUFact Crypt SOR MolDyn MonteCarlo RayTracer

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

(%
)

Useful L1Miss Idle/Sync Commit/Communication Violation

0

5

10

15

20

25

30

35

40

45

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

Lo
ck

s-
8

Tr
an

s.
-8

Lo
ck

s-
16

Tr
an

s.
-1

6

SPECjbb2000 Series SparseMatmult LUFact Crypt SOR MolDyn MonteCarlo RayTracer

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e 

(%
)

Figure 13: SPECjbb2000 and Java Grande benchmarks. Series, SparseMatmult, LUFact, Crypt, SOR are Java
Grande section 2 kernels. MolDyn, MonteCarlo, RayTracer are Java Grande section 3 applications.



between warehouse threads. However, the locking version
is slightly slower in all cases because it must still pay the
locking overhead to protect itself from the 1% chance of an
inter-warehouse order. Most importantly, the transactional
version of SPECjbb2000 did not need any manual changes to
achieve these results; automatically changing synchronized

blocks to transactions and committing on Object.wait()

was sufficient.

Java Grande
Java Grande provides a representative set of multithreaded
kernels and applications. These benchmarks are often Java
versions of benchmarks available in C or Fortran from suites
such as SPEC CPU, SPLASH-2, and Linpack. We ran with
the input sizes shown in Table 2.

The next five parts of Figure 13 show the results from
the Java Grande section 2 kernel programs. These highly-
tuned, lock-based kernels show comparable scaling when run
with transactions. The transactional versions of Series

and SparseMatmult initially are slightly slower because of
commit overhead, but as the number of threads increases,
lock contention becomes a factor for the version with locks.
Transactions and locks perform equally well on LUFact and
Crypt, with lock contention and violations having compara-
ble cost as threads are added. The transactional version of
SOR has similar scaling to the lock-based version, with only
minimal relative slowdown due to violations.

The final three parts of Figure 13 show the results from
the Java Grande section 3 application programs. MolDyn

has limited scalability for both locks and transactions, with
lock overhead being slightly less performance limiting than
time lost to violations. MonteCarlo exhibits scaling with
both locks and transactions, but similar to TestHistogram,
transactions have better absolute performance because of
the overhead cost of locking. RayTracer is similar to the
kernels Series and SparseMatmult, with locks performing
better with fewer processors and transactions performing
better as the number of threads is increased.

Unlike SPECjbb2000, some minor source changes were
necessary to achieve these results. LUFact, MolDyn, Ray-

Tracer all use a common TournamentBarrier class that does
not use synchronized blocks. Each thread that enters the
barrier writes to indicate its progress and then busy waits
to continue. With transactions, it was necessary to place
the write within a synchronized block before busy-waiting,
for otherwise all threads loop forever, believing they are the
only one to have reached the barrier. SOR has the same prob-
lem in its own barrier code; again adding a synchronized

block around the assignment in its barrier code solved the
problem. Note that these changes were necessary because
the programs did not follow the Java Memory Model rules
presented in Section 3.2. We did not find any programs that
needed changes beyond those to comply with these rules.

5. RELATED WORK
Recent transactional hardware proposals build on ear-

lier hardware transactional memory work as well as thread-
level speculation (TLS). Java programming with transac-
tions builds on earlier work on speculating through locks
and transactional memory in general.

5.1 Hardware Transactional Memory
Knight first proposed using hardware to detect data races

in the parallel execution of implicit transactions found in
mostly functional programming languages such as Lisp [21].
Herlihy and Moss proposed transactional memory as a gen-
eralized version of load-linked and store-conditional, meant
for replacing short critical sections [16]. Recent proposals
such as TCC, UTM, and VTM have relieved earlier data
size restrictions on transactions, allowing the development
of continuous transactional models [13, 4, 33]. Thread-level
Speculation (TLS) uses hardware support to allow specu-
lative parallelization of sequential code [12, 23, 37, 39]. In
particular, Chen and Olukotun proposed a system for Java
that allowed automatic parallelization of loops using a pro-
file driven JIT compiler on TLS hardware [8].

From the hardware perspective, these earlier systems gen-
erally layered speculative execution on top of a conventional
cache coherence and consistency protocol. TLS systems al-
lowed speculative threads to communicate results to other
speculative threads continuously. In contrast, TCC com-
pletely replaces the underlying coherence and consistency
protocol, and allows transactions to make their write state
visible only at commit time, which should generally make it
scalable to larger numbers of processors.

From a programming model perspective, earlier hardware
transactional memory systems did not allow program con-
trol over transaction order. TLS systems allow only ordered
execution [29]. TCC allows unordered and ordered transac-
tions, including the use of both models simultaneously.

5.2 Speculating Through Locks
Rajwar and Goodman proposed Speculative Lock Elision

(SLE) [32]. SLE speculates through lock acquisition, allow-
ing concurrent execution using hardware support. If a data
dependency is detected, all involved processors roll back.
Later, Rajwar and Goodman extended SLE to create Trans-
actional Lock Removal (TLR) which used timestamps to
avoid rolling back all processors, giving priority to the old-
est outstanding work [31].

Mart́ınez and Torrellas proposed Speculative Synchroniza-
tion [26] based on TLS hardware. It supports speculating
not just through locks, but also barriers and flags. These
systems have the concept of a safe thread that is non-specu-
lative, and that thread has priority when data dependencies
are detected, similar to TLR’s use of the oldest timestamp.

SLE, TLR, and Speculative Synchronization build upon
conventional cache coherence and consistency, such as early
hardware transactional memory and TLS. As such, they do
not detect run-time races outside of critical regions like con-
tinuous transactional hardware does. They always commit
in order of transaction creation, providing no way for the
programmer to specify the desire for unordered transactions.

5.3 Software Transactional Memory
Shavit and Touitou first proposed a software-only approach

to transactional memory, but it was limited to static trans-
actions where the data set is known in advance, such as
k-word compare-and-swap [36]. Herlihy et al. overcame this
static limitation with their dynamic software transactional
memory work, which offered a Java interface through li-
brary calls [17]. Harris and Fraser provide language support
for software transactional memory, allowing existing Java
code to run as part of a transaction and providing an effi-



cient implementation of Hoare’s conditional critical regions
(CCRs) [14]. Welc et al. provide transactional monitors in
Java through JikesRVM compiler extensions, treating Ob-

ject.wait() as a thread yield without committing [42].
Unlike Shavit and Touitou, later proposals support dy-

namic transactional memory. Unlike Herlihy et al. Har-
ris and Fraser can run unmodified code within transactions.
Unlike Harris and Fraser, hardware transactions can run
both Java and native code within a transaction as well sup-
port non-transactional operations within atomic regions. Un-
like Welc et al. our proposal can run code containing condi-
tional variables such as barriers that require communication
on Object.wait().

Harris et al. later explored integrating software transac-
tional memory with Concurrent Haskell [15]. Haskell is a
mostly functional programming language where most mem-
ory operations do not need to be part of rollback state.
Haskell’s type system identifies I/O operations as part of
signatures. This allows static checking for non-transactional
operations with atomic regions. This work extends the ear-
lier CCR work by allowing an atomic region to block on
multiple complex conditions in a composable way.

Vitek et al. have created a calculus for Transaction Feath-
erweight Java (TFJ) to study the semantics of adding trans-
actions to a programming language. They provide sound-
ness and serializability proofs for both an optimistic concur-
rency model and a two-phase locking protocol [40].

The advantages of hardware transactional memory over
software-only versions are performance and language trans-
parency. Software transactional systems encourage small
critical sections because of the instruction overhead of main-
taining each transaction’s data dependencies. Also, running
a program consisting entirely of transactions would be pro-
hibitively slow with software transactional memory. Current
transactional memory systems, both hardware and software,
do not require the programmer to identify which loads and
stores are to shared memory. However, for software trans-
actional memory this requires compiler support, preventing
transactional code from using mechanisms such as JNI for
calling output from non-transactional compilers and hinder-
ing reuse of existing code.

6. CONCLUSIONS
Continuous transactional models promise to simplify writ-

ing of new parallel applications, but they can also be applied
to parallelize today’s programs. We have shown that con-
ventional Java language constructs for identifying critical
regions can be used to run these existing programs transac-
tionally with minimal changes to applications. We have
demonstrated that a continuous transactional system can
deliver performance equal to or better than a lock-based
implementation using the same programmer-defined critical
regions. We also showed that simple, coarse-grained trans-
actions can perform as well as fine-grained locking, demon-
strating both the potential for simplified parallel program-
ming and the increased performance of existing applications
implemented using coarse-grained locking. The combination
of good performance on conventional Java concurrency con-
structs, combined with the potential for simpler code that
transactions offer, provides a foundation for easing the task
of parallel software development.

7. ACKNOWLEDGMENTS
This research was sponsored by the Defense Advanced

Research Projects Agency (DARPA) through the Depart-
ment of the Interior National Business Center under grant
number NBCH104009. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

Additional support was also available through NSF grant
0444470. Brian D. Carlstrom is supported by an Intel Foun-
dation PhD Fellowship.

8. REFERENCES
[1] S. V. Adve and K. Gharachorloo. Shared memory

consistency models: A tutorial. IEEE Computer,
29(12):66–76, December 1996.

[2] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and
D. Burger. Clock rate versus IPC: the end of the road
for conventional microarchitectures. In Proceedings of
the 27th Annual International Symposium on
Computer Architecture, pages 248–259, 2000.

[3] E. Allen, D. Chase, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. S. Jr., and S. Tobin-Hochstadt. The
Fortress Language Specification. Sun Microsystems,
2005.

[4] S. Ananian, K. Asanovic, et al. Unbounded
transactional memory. In Proceedings of the 11th
International Symposium on High Performance
Computer Architecture, February 2005.

[5] The Broadcom BCM-1250 Multiprocessor. Technical
report, Broadcom Corporation, April 2002.

[6] M. Campione, K. Walrath, and A. Huml. The Java
Tutorial. Addison-Wesley Professional, third edition,
January 2000.

[7] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff,
A. Kielstra, C. von Praun, V. Saraswat, and
V. Sarkar. X10: An object-oriented approach to
non-uniform cluster computing. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programing, systems,
languages, and applications. ACM Press, 2005.

[8] M. K. Chen and K. Olukotun. The Jrpm system for
dynamically parallelizing java programs. In
Proceedings of the 30th International Symposium on
Computer Architecture, pages 434–445, June 2003.

[9] C. Flanagan. Atomicity in multithreaded software. In
Workshop on Transactional Systems, April 2005.

[10] M. Garzaran, M. Prvulovic, et al. Tradeoffs in
buffering multi-version memory state for speculative
thread-level parallelization in multiprocessors. In
Proceedings of the 9th International Symposium on
High Performance Computer Architecture, February
2003.

[11] L. Hammond, B. D. Carlstrom, V. Wong,
B. Hertzberg, M. Chen, C. Kozyrakis, and
K. Olukotun. Programming with transactional
coherence and consistency. In Proceedings of the 11th
International Conference on Architecture Support for
Programming Languages and Operating Systems, Oct.
2004.

[12] L. Hammond, B. Hubbert, M. Siu, M. Prabhu,
M. Chen, and K. Olukotun. The Stanford Hydra



CMP. IEEE MICRO Magazine, March–April 2000.

[13] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional
memory coherence and consistency. In Proceedings of
the 31st International Symposium on Computer
Architecture, pages 102–113, June 2004.

[14] T. Harris and K. Fraser. Language support for
lightweight transactions. In OOPSLA ’03: Proceedings
of the 18th annual ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and
applications, pages 388–402. ACM Press, 2003.

[15] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy.
Composable memory transactions. In Proceedings of
the Principles and Practice of Parallel Programming,
July 2005.

[16] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of the 20th International Symposium on
Computer Architecture, pages 289–300, 1993.

[17] M. P. Herlihy, V. Luchangco, M. Moir, and W. M.
Scherer. Software transactional memory for
dynamic-sized data structures. In Proceedings of the
22nd Annual Symposium on Principles of Distributed
Computing, July 2003.

[18] Java Grande Forum, Java Grande Benchmark Suite.
http://www.epcc.ed.ac.uk/javagrande/, 2000.

[19] Java Specification Request (JSR) 133: Java Memory
Model and Thread Specification, September 2004.

[20] R. Kalla, B. Sinharoy, and J. Tendler. Simultaneous
multi-threading implementation in POWER5. In
Conference Record of Hot Chips 15 Symposium,
Stanford, CA, August 2003.

[21] T. Knight. An architecture for mostly functional
languages. In Proceedings of the 1986 ACM Conference
on Lisp and Functional Programming, August 1986.

[22] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara:
A 32-way multithreaded Sparc processor. IEEE
MICRO Magazine, 25(2):21–29, March-April 2005.

[23] V. Krishnan and J. Torrellas. A chip multiprocessor
architecture with speculative multithreading. IEEE
Transactions on Computers, Special Issue on
Multithreaded Architecture, September 1999.

[24] D. Lea. package util.concurrent .
http://gee.cs.oswego.edu/dl, May 2004.

[25] S. Liang. Java Native Interface: Programmer’s Guide
and Reference. Addison-Wesley Longman Publishing
Company, Inc., 1999.

[26] J. Martinez and J. Torrellas. Speculative
synchronization: Applying thread-level speculation to
parallel applications. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
October 2002.

[27] A. McDonald, J. Chung, H. Chafi, C. Cao Minh, B. D.
Carlstrom, L. Hammond, C. Kozyrakis, and
K. Olukotun. Characterization of tcc on
chip-multiprocessors. In Proceedings of the 14th
International Conference on Parallel Architectures and
Compilation Techniques, September 2005.

[28] J. E. B. Moss. Nested Transactions: An Approach to

Reliable Distributed Computing. MIT Press, March
1985.

[29] M. K. Prabhu and K. Olukotun. Using thread-level
speculation to simplify manual parallelization. In
Proceedings of the Principles and Practice of Parallel
Programming, pages 1–12, 2003.

[30] W. Pugh. The Java memory model is fatally flawed.
Concurrency - Practice and Experience,
12(6):445–455, 2000.

[31] R. Rajwar and J. Goodman. Transactional lock-free
execution of lock-based programs. In Proceedings of
the 10th International Conference on Architectural
Support for Programming Languages and Operating
Systems, October 2002.

[32] R. Rajwar and J. R. Goodman. Speculative lock
elision: enabling highly concurrent multithreaded
execution. In MICRO 34: Proceedings of the 34th
annual ACM/IEEE international symposium on
Microarchitecture, pages 294–305. IEEE Computer
Society, 2001.

[33] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing
transactional memory. In Proceedings of the 32nd
International Symposium on Computer Architecture,
June 2005.

[34] R. Raman. UltraSparc Gemini: Dual CPU processor.
In Conference Record of Hot Chips 15 Symposium,
Palo Alto, CA, August 2003.

[35] B. Sandén. Coping with Java threads. IEEE
Computer, 37(4):20–27, 2004.

[36] N. Shavit and S. Touitou. Software transactional
memory. In Proceedings of the 14th Annual ACM
Symposium on Principles of Distributed Computing,
pages 204–213, Ottawa, Canada, August 1995.

[37] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar
processors. In Proceedings of the 22nd Annual
International Symposium on Computer Architecture,
pages 414–425, June 1995.

[38] Standard Performance Evaluation Corporation,
SPECjbb2000 Benchmark .
http://www.spec.org/jbb2000/, 2000.

[39] J. Steffan and T. Mowry. The potential for using
thread-level data speculation to facilitate automatic
parallelization. In Proceedings of the Fourth
International Symposium on High-Performance
Computer Architecture, Las Vegas, Nevada, 1998.

[40] J. Vitek, S. Jagannathan, A. Welc, and A. L. Hosking.
A semantic framework for designer transactions. In
D. A. Schmidt, editor, Proceedings of the European
Symposium on Programming, volume 2986 of Lecture
Notes in Computer Science, pages 249–263.
Springer-Verlag, 2004.

[41] D. W. Wall. Limits of instruction-level parallelism. In
ASPLOS-IV: Proceedings of the fourth international
conference on Architectural support for programming
languages and operating systems, pages 176–188. ACM
Press, 1991.

[42] A. Welc, S. Jagannathan, and A. L. Hosking.
Transactional monitors for concurrent objects. In
M. Odersky, editor, Proceedings of the European
Conference on Object-Oriented Programming, volume
3086 of Lecture Notes in Computer Science, pages
519–542. Springer-Verlag, 2004.


