
Characterization of TCC on Chip-Multiprocessors

Austen McDonald, JaeWoong Chung, Hassan Chafi, Chi Cao Minh,Brian D. Carlstrom
Lance Hammond, Christos Kozyrakis, Kunle Olukotun

Computer Systems Laboratory
Stanford University

{austenmc, jwchung, hchafi, caominh, bdc, lance, kozyraki, kunle}@stanford.edu

Abstract

Transactional Coherence and Consistency (TCC) is a
novel coherence scheme for shared memory multiproces-
sors that uses programmer-defined transactions as the fun-
damental unit of parallel work, synchronization, coherence,
and consistency. TCC has the potential to simplify paral-
lel program development and optimization by providing a
smooth transition from sequential to parallel programs.

In this paper, we study the implementation of TCC on
chip-multiprocessors (CMPs). We explore design alter-
natives such as the granularity of state tracking, double-
buffering, and write-update and write-invalidate protocols.
Furthermore, we characterize the performance of TCC in
comparison to conventional snoopy cache coherence (SCC)
using parallel applications optimized for each scheme. We
conclude that the two coherence schemes perform similarly,
with each scheme having a slight advantage for some appli-
cations. The bandwidth requirements of TCC are slightly
higher but well within the capabilities of CMP systems.
Also, we find that overflow of speculative state can be effec-
tively handled by a simple victim cache. Our results suggest
TCC can provide its programming advantages without com-
promising the performance expected from well-tuned paral-
lel applications.

1. Introduction
Parallel processing has reached a critical juncture. On

one hand, with ILP techniques running out of steam, chip
multiprocessors (CMPs) are becoming the norm. Ev-
ery major processor vendor has announced a CMP prod-
uct [22, 23, 27]. On the other hand, writing correct and ef-
ficient multithreaded programs with conventional program-
ming models is still an incredibly complex task limited to
a few expert programmers. Unless we develop models that
make parallel programming the common case, the perfor-
mance potential of CMPs will be limited to multiprogram-
ming workloads and a few server applications.

Transactional Coherence and Consistency (TCC) uses
continuous transactional executionto simplify parallel pro-
gramming [14]. Unlike previous proposals using transac-
tional memory merely for non-blocking synchronization,
TCC uses programmer-defined transactions as the basic unit
of parallel work, synchronization, memory coherence, and
consistency. In TCC, transactions continuously execute ina
speculative manner, using the execution model illustrated
in Figure 1. Each transaction is a sequence of instruc-
tions guaranteed to execute atomically. During execution,
writes are buffered locally, then committed to shared mem-
ory atomically at transaction completion as well as broad-
cast to other transactions in the system. Other transactions
snoop these broadcasts to maintain cache coherence and de-
tect when they have used data that has subsequently been
modified by the committing transaction—a dependence vi-
olation that causes transactional re-execution.

Continuous transactional execution simplifies shared-
memory parallel programming in four ways [14]. First, it
provides programmers with a single, high-level abstraction
to reason about parallelism, communication, consistency,
and failure atomicity. A single clear abstraction is key to an
intuitive programming model. Second, transactions allow
speculative parallelization of sequential algorithms without
the need for the programmer to prove independence or man-
ually handle rare dependencies. Third, transactions allow
the user to specify the high-level atomicity and ordering re-
quirements in parallel algorithms, but move the burden of
implementing these requirements to hardware and system
software. Locking conventions and the associated races and
deadlocks are eliminated. Finally, as hardware continuously
monitors the progress of concurrent transactions, there isan
opportunity for low-overhead collection of profile data for
feedback-driven or dynamic optimizations [7].

Early trace-driven experiments of TCC-based multipro-
cessors with idealized caches have shown good parallel per-
formance potential for a variety of applications [16]. In this
paper, we provide the first thorough, execution-driven char-



Execute

Code

Arbitrate

Commit

Transaction

Starts

Transaction

Completes

Requests

Commit

Commit

Starts

Commit

Completes

Commit

Permission

Commit

Permission

T
im

e
 Execute

Code

Arbitrate

Commit

Execute

Code

Arbitrate

Commit

Trans. 0 Trans. 1 Trans. 2

Figure 1: Execution timeline of three transactions in a
TCC system.

acterization of continuous transactional execution on CMPs
and make the following contributions:

• Performance Comparison on CMPs. A straight-
forward implementation of TCC performs and scales
similarly to conventional cache coherence schemes.
TCC has a performance advantage for difficult-to-tune
applications with irregular communication patterns.

• Bandwidth Requirements. The commit bandwidth
requirements for TCC are only slightly higher than
with conventional schemes, but well within the capa-
bilities of bus-based interconnects, even for a CMP
with 16 processors.

• Buffering Requirements. The common buffering re-
quirements for transactional execution are modest and
can be satisfied by first-level caches. On the other
hand, associativity overflows pose a frequent bottle-
neck, but can be virtually eliminated with a simple vic-
tim cache.

• Design Alternatives. We evaluate three TCC design
alternatives: choice of snooping protocol (invalidate
or update), single vs. double buffering, and word vs.
cache line granularity for speculative state tracking.
Experiments show performance is not significantly im-
pacted by choice of protocol or buffering scheme.
However, word-level granularity is clearly beneficial
for applications with fine-grain sharing patterns.

Our results prove that continuous transactional executionis
practical to implement for CMP systems. TCC provides
for easier parallel programming without compromises in the
peak performance possible for each application.

The rest of this paper is organized as follows. Section 2
describes an implementation for a TCC-based CMP system.
In Section 3, we provide a qualitative comparison between
TCC and conventional cache coherence. Section 4 presents

our experimental methodology. In Section 5, we present
the evaluation results. Section 6 discusses related work and
Section 7 concludes the paper.

2. Transactional Coherence and Consistency
The conventional wisdom for supporting transactional

memory is to overlay it on top of the already complex coher-
ence and consistency protocols [26, 30, 29, 33]. Additional
states are necessary in the MESI protocol and extra rules are
needed for load-store ordering. In contrast, TCC directly
implements transactional memory with optimistic concur-
rency. This mechanism is also sufficient to provide cache
coherence and memory consistency at transaction bound-
aries without additional complications. In this section, we
describe a straight-forward implementation of the TCC ex-
ecution model for CMP systems. The design supports con-
tinuous execution of transactions by providing a means for
buffering and committing the transactional state produced
by each processor.

The CMP organization we study is similar to those in
previous studies [6, 15, 23]: a number of simple proces-
sors with private L1 caches sharing a large, on-chip L2
cache. The processors and L2 are connected through split-
transaction commit and refill buses. The two buses provide
high bandwidth through wide data transfers and bursts. The
commit bus has de-multiplexed address and data lines and
is used to initiate L2 accesses (address only) and to commit
their stores at the end of each transaction (address and data).
The refill bus is used to transmit refill data from the L2 to
the processors (data only). Both buses are logical but not
physical buses, providing serialization and broadcast. To
support high bandwidth, they are implemented using a star-
like topology with point-to-point connections that supports
pipelined operation for both arbitration and transfers [20].

2.1 Transactional Buffering

Each processor buffers the addresses and data for all
stores within a transaction (the write-set) until it commits or
aborts. The processor simultaneously tracks all addresses
loaded within a transaction (the read-set) in order to de-
tect dependency violations when other transactions commit
their write-sets. We store both read- and write-set informa-
tion in the L1 data cache because it provides high capac-
ity with support for fast associative searches [12, 38, 24].
It also allows speculative and non-speculative data to dy-
namically share the storage capacity available in each pro-
cessor in the most flexible way. Cached data become non-
speculative when the transaction that fetched or produced
them commits.

The cache stores data at the granularity of lines, but
we can track the transaction read-set and write-sets at the
granularity of lines or individual words. Figure 2 presents
the L1 data cache organization for the case with word-
level speculative state tracking. Cache lines include valid,



Processor

SR
7:0

SM
7:0

TAG
(2-ported)

DATA
(single-ported)

Data

Cache

Victim

Cache

Load/Store

Data
Violation

Load/Store

Address

Snoop

Control

Overflow

Control

Commit

Address

Commit

Control

Overflow
Commit

Data

Trigger

Store

Address

FIFO

Commit

Fill

Control

Register
Checkpoint

Commit Bus

Refill Bus

Commit

Address In

Commit

Data In

Refill

Data

Commit

Data Out

Commit

Address Out

V
7:0

Write

Victim
Buffer

Figure 2: The data cache organization for transactional
coherence. Double buffering requires additional hard-
ware: a write victim buffer, duplicate SR/SM bits, an ex-
tra store address FIFO, and another register checkpoint.
Shown is the configuration for word-level speculative
state tracking.

speculatively-modified (SM), and speculatively-read (SR)
bits for each word. For a 32-bit processor with 32-byte
cache lines, 8 bits of each type are needed per line. The SM
bit indicates that the corresponding word has been modified
by a store during the currently executing transaction. Simi-
larly, the SR bit indicates that its word has been read by the
current transaction. SR is set on loads, unless the SM bit
is already set, to implement memory renaming and elimi-
nate dependency violations due to WAW and WAR hazards
across transactions1. Line-level speculative state tracking
works in a similar manner but requires a single valid, SR,
and SM bit per line. We discuss the tradeoffs of each ap-
proach in Section 2.6.

2.2 Transactional Commit

To commit a transaction, a processor first arbitrates for
permission, then broadcasts its write-set to the lower levels
of the memory hierarchy. Meanwhile, all other processors
snoop the committed addresses and data to detect potential
dependency violations and update or invalidate the contents
of their caches to maintain coherence. System-wide arbitra-
tion guarantees that all processors see commits in the same
order (serializability). Hence, memory consistency is main-
tained at transaction boundaries without rules for ordering
of individual loads and stores.

1To handle renaming correctly in the presence of byte or half-
word loads and stores, we set both the SR and SM bits on subword
stores. This approach may generate a few unnecessary dependency
violations in the presence of byte-level false sharing.

TCC allows programmers to define ordered, partially or-
dered, and unordered transactions, with ordering enforced
during commit arbitration [14]. Therefore, acquiring com-
mit permission may impose significant wait time on an ap-
plication with ordered transactions, as younger transactions
must always wait for older transactions to commit first.
Even with unordered transactions, significant delays can oc-
cur if multiple transactions attempt to commit within a small
period of time because of bus contention.

The processor identifies the transaction write-set in the
data cache with help from the store address FIFO (SAF).
This is a non-associative, tagless, single-ported buffer con-
taining pointers to speculatively modified cache lines. For
a 32-KB cache with 32-byte lines, the SAF requires 1024
entries with 10 bits per entry. So, the SAF area is small
compared to that of the cache. During transaction execu-
tion, stores check the SM bits of the corresponding line in
parallel with the tag comparison. If all SM bits are 0, this
is the first speculative store to the line in this transaction
and a pointer is inserted in the SAF. If an SM bit is set, the
line address is already registered in the SAF. During com-
mit, we read the SAF pointers one by one and flush out the
speculatively modified words in the identified cache lines.
The cache line address and a bitmask with the SM bits are
transmitted along with the dirty words. The transmission
itself may take multiple cycles, depending on the bus width
and the number of modified words. After the write-set is
committed, we reset all SM and SR bits to indicate that the
corresponding lines/words are no longer speculative.

All other processors use a second port in the cache tags to
snoop the committed addresses and detect any dependency
violations for the transactions they currently execute. A vi-
olation occurs when the an executing transaction has spec-
ulatively read one of the words committed (i.e., there is a
match for the snoop tag access and the word has the SR bit
set in the cache). The processor must also check pending
accesses in the MSHRs. When a violation is detected, spec-
ulatively modified lines are invalidated, SR and SM bits are
cleared, and the transaction restarts.

2.3 Invalidate vs. Update

A processor must revise the state of any line it caches if
it is modified by a committing transaction in order to main-
tain cache coherence. One can use anupdateor invalidate
protocol to handle snoop matches: update replaces the old
data value with the new committed value, while an inval-
idate protocol evicts any data modified by the committing
transaction. An update protocol is possible for this CMP
system as the committing processor is already placing the
data on the commit bus for the L2 cache. The main disad-
vantage is that updates share the single data port in the L1
caches with the processors. Therefore, occasional stalls oc-
cur during load and store accesses from those processors.



An invalidate protocol is more complicated as we may need
to invalidate a word in a line with other speculatively mod-
ified or read words. We cannot simply invalidate the whole
line because we would lose part of the transaction read-set
or write-set. A solution is to provide per-word valid bits,
which introduces storage overhead and complicates miss
handling. The performance difference between the two pro-
tocols depends on the percentage of updated or invalidated
words that are later accessed by the processor. A large per-
centage gives a performance advantage to the update proto-
col.

2.4 Buffer Overflow

Buffer overflows happen when the L1 can no longer cap-
ture the write- and read-sets of the executing transaction.
They occur either because the capacity or the associativity
of the cache is exhausted. Overflows cause a major perfor-
mance bottleneck for transactional execution regardless of
how they are handled. One can switch to software transac-
tional buffering [18, 17] or overflow to a special region in
the lower levels of the memory hierarchy that has hardware
support for speculative state [10, 4, 31]. In any case, the ex-
tended buffers are slower than the L1 data cache for search-
ing, committing, or flushing speculative data. In this study,
we use a simple technique to handle overflows [16]. When
an overflow is detected, the hardware must commit the cur-
rent write-set of the transaction, potentially waiting a long
time for commit permission due to ordering constraints. No
other transaction is then allowed to commit until the over-
flowing transaction has reached its regular commit point.
Essentially, this serializes the system even if all processors
execute unordered transactions.

In Section 5, we demonstrate that capacity overflows are
extremely rare for processors with 32-KB caches. An over-
flow handling mechanism is still necessary for the uncom-
mon case, but its performance is non-critical. On the other
hand, associativity overflows are more frequent as there are
often “hot” cache indices in each transaction where multi-
ple cache lines with speculatively-read or -modified data are
mapped. We address this issue with a victim cache [21] that
stores the lines that would otherwise cause an associativity
overflow (see Figure 2). Each line in the victim cache has
the identical format as a line in the data cache. In Section
5, we demonstrate that an 8-entry, fully-associative victim
cache eliminates virtually all associativity overflows in the
applications we examined.

2.5 Double Buffering

So far, we assume a processor stalls while it commits
a transaction before it starts the next one (see Figure 1).
While simple, this approach cannot hide the latency of com-
mit arbitration and write-set transmission. Double buffering
can hide commit latency by allowing a processor to start ex-
ecuting the next transaction in parallel with committing its

previous one. The hardware required for double buffering
in the CMP implementation of TCC is shown in Figure 2:
the cache maintains two sets of SR and SM bits to track the
read- and write-sets for both transactions simultaneously,
but only one copy of the data is kept. A second SAF is also
needed. The two read-sets may intersect without any com-
plications, but special care is necessary when both transac-
tions write to same word. We must maintain both specula-
tive versions of the word, as the younger transaction may vi-
olate while the older transaction commits without problems.
We handle this case using a separate write victim buffer.
When the younger transaction first overwrites a word mod-
ified by an older transaction, we copy the line into the write
victim buffer and clear the SM bits in the cache for the older
transaction. When the older transaction commits its write-
set, it also commits any lines stored in the victim buffer. In
our experiments, we do not limit the size of the write vic-
tim buffer in order to optimistically determine the value of
double buffering.

Though resources required for double buffering are min-
imal in terms of area, the additional control complexity is
significant as there are several corner cases (multiple ver-
sions of words, conflicts between transactions, violation and
restart ordering). If commit latency is not a major bottle-
neck, which is often the case in a CMP environment with
plentiful commit bandwidth, the occasional performance
advantage of double buffering may not be worth the addi-
tional area overhead and control complexity.

2.6 Speculative State Granularity

So far, we have used word-level tracking of speculatively
read and modified state. With fine-grain write-set infor-
mation, we minimize commit bandwidth by sending only
modified words. Additionally, word-level read-set track-
ing eliminates most false dependency violations—those be-
tween transactions that read and write different words in
the same cache line. Alternatively, we can track specula-
tive state at the cache line-level by keeping a single SR and
SM bit per line. This saves die area, but causes spurious
violations for two reasons: false sharing and the inabilityto
resolve conflicts between a modified line and a commit to
that same line. The latter case is handled smoothly by word-
level tracking because we know which words are modified
by the running transaction and we can skip them when up-
dating/invalidating, thus avoiding WAW hazards.

2.7 Discussion

A few processor core modifications are needed for trans-
actional execution. The processor must create checkpoints
of architectural registers at the beginning of each transac-
tion, which are restored in the case of a dependency viola-
tion. Two checkpoints are necessary for double buffering.
Furthermore, the processor requires a few new instructions
to trigger the register checkpoint and transaction commit.



The presented TCC-based CMP uses a straight-forward
implementation of the TCC execution model. Several al-
ternative implementations are possible and of interest es-
pecially for larger-scale systems: extended buffering in the
L2 cache, commit in place to avoid data broadcast at trans-
action commit, directory-based schemes to reduce commit
traffic, and two-phase schemes for parallel commit of inde-
pendent transactions. We will explore these techniques in
future work. Nevertheless, this implementation is sufficient
to achieve good performance in a CMP environment and to
analyze the virtues of transactional execution.

There are several operating system issues (virtualiza-
tion, scheduling) and programming model challenges (nest-
ing semantics, I/O) to explore with respect to continuous
transactional execution. Several researchers have started ex-
ploring these issues [31]. This paper focuses exclusively
on hardware feasibility and performance comparison: other
challenges are not of interest if continuous transactionalex-
ecution is prohibitive to implement or offers poor perfor-
mance compared to conventional techniques.

3. Transactional vs. Snoopy Coherence

The TCC architecture in Section 2 provides processors
with cache-coherent access to shared memory. However,
there are distinctive differences between transactional cache
coherence (TCC) and conventional snoopy cache coherence
(SCC) using a protocol like MESI [8].
Time Granularity & Bandwidth: TCC maintains coher-
ence at transaction boundaries. Until transactions commit,
caches may temporarily contain incoherent data. Coher-
ence events involve the whole write-set, even if only a frac-
tion of it is actually shared across processors. On the other
hand, SCC maintains coherence at a fine time granularity—
on every load and store issued by any processor. Coherence
events such as invalidations or ownership requests handle
a single cache line at the time. However, SCC generates
coherence events only when cache lines are actually shared.
Address Granularity: TCC can track coherence at a fine
granularity with respect to addresses. Data are brought into
the cache at the granularity of cache lines but state can be
tracked at the granularity of individual words. Fine-grain
state tracking is necessary to reduce commit bandwidth re-
quirements and eliminate expensive false sharing violations
during speculative execution. In contrast, SCC typically
tracks data state and ownership at the granularity of whole
cache lines, in order to limit the frequency and overhead of
coherence events.
Speculation: TCC executes transactions in parallel using
speculation. A transaction loads and stores data specula-
tively, even though the actual state and validity of data may
not be determined until the transaction commits. Specula-
tion allows TCC to support multiple concurrent writes with-
out inter-processor communication at the time the writes oc-

cur. SCC, in its base form at least, is non-speculative. Only
one processor may have write access to a cache line at any
point in time, so multiple writes are serialized.

Synchronization: TCC inherently supports non-blocking
atomic execution of operations grouped into a single trans-
action, regardless of the number of memory objects they
process. On the other hand, SCC communication re-
quires additional lock variables accessed with atomicity in-
structions (load-linked and store-conditional, test-and-set,
compare-and-swap, etc.) to implement mutual exclusion.
Furthermore, a consistency protocol is necessary to order
ordinary and special loads and stores across processors.

The following sections discuss how the semantic differ-
ences between TCC and SCC translate to performance ad-
vantages or bottlenecks within the CMP environment. Sec-
tion 5 presents quantitative data that evaluate the practical
importance of each issue.

3.1 Snoopy Coherence Advantages

SCC has a performance advantage over TCC for applica-
tions with fine-grain, high-frequency communication. Data
can be transferred between SCC caches as soon as the com-
munication is detected and, apart from interconnect latency,
there is no additional performance penalty. With TCC, on
the other hand, fine-grain communication between trans-
actions can lead to significant performance loss due to vi-
olations (large transactions) or excessive overhead (small
transactions). However, this is not a major handicap be-
cause applications with fine-grain communication patterns
tend to scale poorly on all parallel systems.

Transaction commit poses a performance challenge in
TCC even for applications with coarse-grain communica-
tion. Without double buffering, the processor is idling while
arbitrating for and committing a transaction. The arbitra-
tion time depends on transaction ordering, on the number
of processors arbitrating concurrently, and on bus usage by
other transactions. Double buffering can hide some of this
latency, but its benefits are limited by two factors. First,
the arbitration and commit time of the older transactions is
not always perfectly balanced with the execution time of
the second transaction. Second, the two transactions share
a single cache and a single interface to the bus interconnect.

Commits can also expose a bandwidth bottleneck for
TCC systems. With SCC, data produced by a processor
are only transmitted on inter-processor communication or
when they no longer fit in the cache. With the simple TCC
implementation presented, the whole write-set of a trans-
action is transmitted, regardless of communication patterns
and caching behavior. Even for a CMP environment, band-
width may become an issue for configurations with large
processor counts.

Finally, TCC performance is affected by the frequency
of dependency violations and overflows. Dependency viola-



tions have a dual negative effect. First, they waste valuable
time on a processor, especially if they occur toward the end
of the transaction. Second, before a transaction violates,it
generates cache misses that consume cycles on the commit
and refill buses, delaying other transactions that are execut-
ing useful work. Overflows cause additional commits and
may serialize the system.

3.2 Transactional Coherence Advantages

TCC supports speculative parallelization of irregular ap-
plications for which data independence cannot be fully
proven and communication patterns are difficult to under-
stand [32]. As long as the programmer can correctly iden-
tify transactions and their commit order, the CMP hardware
executes the code correctly and achieves speedup if paral-
lelism is available [14].

Every TCC transaction is inherently a non-blocking,
atomic task on multiple memory objects. Hence, TCC can
facilitate parallel access to shared data without incurring
the runtime overhead of fine-grain locking. Furthermore,
lock-based synchronization easily leads to races or dead-
locks as programmers associate the wrong lock (or no lock)
to a shared object or acquire locks in an unsafe order.

TCC can eliminate the SCC performance penalty for
false sharing. By tracking the transaction read- and write-
sets at word granularity, a TCC-based CMP can identify
when two transactions update different words in the same
cache line and avoid unnecessary dependency violations.
On the other hand, SCC incurs inter-processor communica-
tion for ownership upgrades and downgrades on false shar-
ing. Word-granularity state tracking also allows TCC to im-
plement memory renaming and eliminate violations on out-
put and on anti-dependencies between transactions. With
SCC, output and anti-dependencies between threads must
be explicitly handled with synchronization.

Despite the potentially high bandwidth requirements for
commits, TCC can utilize interconnect bandwidth better
than SCC. Transaction write-sets range from tens to thou-
sands of words, hence large burst transfers on wide buses
can efficiently move the data to the L2 cache and other pro-
cessors, amortizing the latency of bus arbitration. In con-
trast, all SCC transfers involve a single cache line, making
it difficult to amortize arbitration latency or use buses wider
than a cache line.

4. Methodology
We evaluate the performance of CMPs with the proposed

TCC implementation or the MESI snoopy cache coherence
(SCC) using an execution-driven simulator modeling Pow-
erPC processors. All instructions, except loads and stores,
have a CPI of 1.0. The memory system models the tim-
ing of the L1 caches, the shared L2 cache, and the commit
and refill buses. All contention and queuing for accesses to
caches and buses is modeled. In particular, we model the

Feature Description

CPU 1–16 single-issue PowerPC cores (8)
L1 32-KB, 32-byte cache line

4-way associative, 1 cycle latency
Victim Cache 0–32 entries fully associative (8)
Double Buffering (Off) [TCC only]

Bus Width 16 bytes
Bus Arbitration 3 pipelined cycles
Transfer Latency 3 pipelined cycles

L2 Cache 8MB, 8-way
16 cycles hit time

Main Memory 100 cycles latency
up to 8 outstanding transfers

Table 1: Parameters for the simulated CMP architecture.
Unless indicated otherwise, results assume the default
values in parentheses. Bus width and latency parame-
ters apply to both commit and refill buses. L2 hit time
includes arbitration and bus transfer time.

contention for the single data port in the L1 caches, which
is used for processor accesses and commits (TCC with up-
date protocol) or cache-to-cache transfers (SCC). Table 1
presents the main parameters for the simulated CMP archi-
tecture. The default configuration for TCC uses an invali-
date protocol, an 8-entry victim cache, and single buffering.

With SCC, the CMP uses the commit bus to initiate
L2 refills and issue invalidate or upgrade requests. The
refill bus is used for replies from the L2 cache and for
cache-to-cache transfers. The victim cache is used for re-
cently evicted data from the L1 cache. We always use an
invalidation-based MESI protocol for SCC because it gen-
erates less inter-processor traffic and is more widely used
than update-based protocols in bus-based multiprocessor
systems [39].

We compare the two coherence schemes using nine par-
allel applications:equake,swim, andtomcatv from the
SPEC CPUFP suite [36];barnes,mp3d,ocean,radix,
andwater-nsquared (called simplywater) from the
SPLASH and SPLASH-2 parallel benchmark suites [34,
40]; andSPECjbb2000 [37]. SPECjbb was only used
for the CPU scaling experiments and ran on top of the Jikes
RVM [3]. We chose these applications because they are rep-
resentative of important workloads and their code has been
heavily optimized for conventional SCC multiprocessors by
the research community over a period of years. It includes
optimizations to reduce synchronization, false sharing, and
the impact of communication latency. Even though transac-
tional execution with TCC allows us to speculatively paral-
lelize applications in a manner that is beyond the capabil-
ities of conventional parallelization techniques, we wanted
to ensure we did not penalize the performance of SCC by
using such applications. This study focuses on sustained
performance and not on ease of programming or tuning.

We ported the applications to TCC using the following



Application

Trans. Trans. Trans. Ops. per
Size Wr. Set Rd. Set Word

90th % 90th % 90th % Written
(Inst) (KB) (KB) 90th %

barnes[40] 2,722 0.34 .80 62.1
(2048 part.)

equake[36] 10,233 .35 2.1 129.7
(ref.)

mp3d[34] 748 .34 .40 7.8
(3,000 mol.)

ocean[40] 1,293 1.0 2.5 39.4
(258x258)

radix [40] 4,373 1.4 2.6 17.5
(262,144 keys)

swim [36] 3,876 2.9 6.1 8.1
(ref.)

tomcatv[36] 751 0.66 .91 8.3
(ref.)

water[40] 927 0.42 0.46 8.9
(512 mol.)

SPECjbb[37] 50,556 2.44 1.38 143.6
(368 trans.)

Table 2: Applications used for performance evaluation.
The 90th percentile transaction size, measured in in-
structions, the 90th percentile transaction write- and
read-set sizes in KBytes, and the 90th percentile of op-
erations per word written.

process. For SPEC and SPLASH, we converted the code
between barrier calls into unordered transactions, discard-
ing any lock or unlock statements. ForSPECjbb2000,
we converted the 5 application-level transactions into un-
ordered transactions. Next, we used profiling information
to identify and tune performance bottlenecks as described
in [14]. The tuning process typically lasted a few hours per
benchmark and produced code optimized for transactional
execution with TCC.

5. Performance Evaluation
This section presents the quantitative evaluation of con-

tinuous transactional execution with TCC in a CMP sys-
tem. First, we analyze applications to identify the ranges of
runtime behavior TCC hardware must efficiently support.
Next, we explore TCC implementation alternatives. Finally,
we compare the performance of TCC to SCC as we scale the
processor count.

5.1 Transactional Application Analysis

Table 2 shows the characteristics of our applications un-
der TCC. These characteristics depend on the transactional
programming model and the optimization level (see [14] for
a detailed discussion), but not on the hardware parameters.
Transaction sizes range from a half- to fifty-thousand in-
structions, which provides adequate work to hide the over-
head of starting a new transaction (approximately 8 instruc-

0.0001

0.001

0.01

0.1

1

0.0001

0.001

0.01

0.1

1

N
or

m
al

iz
ed

 O
ve

rf
lo

w
 C

ou
nt tomcatv

equake

barnes

4- 8- 16-

-way assoc. 2-way assoc. 4-way assoc.

8 16 32 8 16 324
VC VC VC VC VC VC VC

(no VC)

Figure 3: Associative overflows for tomcatv, equake,
and barnes, varying cache configuration. Only associa-
tivity is varied on the first three plots (4-, 8-, and 16-way).
The remaining plots vary both associativity and victim
cache (VC) entries. The vertical axis is logarithmic and
normalized to 2-way associative, no victim cache.

tions given a preallocated stack per CPU). Table 2 also
shows statistics for read- and write-set sizes in the nine ap-
plications. 90% read-set size for all transactions is less than
7 KB, while the 90% write-set never exceeds 3 KB. These
maximum sizes imply a 32-KB L1 cache can capture the
read- and write-sets for these applications withoutanyca-
pacity overflow. While a software-based overflow mech-
anism is necessary to handle rare capacity overflows, the
common case for continuous transactional execution with
these applications is easy to handle with fast hardware tech-
niques. We discuss associativity overflows in the following
section.

Furthermore, Table 2 presents the ratio of operations per
word in the write-set. The ratio ranges from 8 to 143, de-
pending on the transaction size and the store locality exhib-
ited for each application. This ratio is important because
it indicates the bandwidth requirements necessary to com-
mit data and the commit overhead. Applications with a high
ratio such asequake can commit quickly even when band-
width is scarce. Applications with a low ratio likemp3d put
pressure on commit bandwidth and experience performance
loss due to bus contention. Nevertheless, the bus utilization
depends both on commit (writes) and L1 miss (reads) traf-
fic. If the latter is low, a greater need for commit bandwidth
can be tolerated.

5.2 TCC Design Space Analysis

There are four major design choices to explore in the
CMP implementation of TCC: associativity overflow han-
dling, the use of an update or invalidate protocol for com-
mit, the use of single or double buffering, and word- vs.
line-level speculative state tracking.



 U I U I U I U I U I U I U I U I
0

5

10

15

20

25

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(%
)

Useful

L1 Miss

Idle/Synch.

Commit/Comm.

Violations

barnes equake radix tomcatvmp3d waterswimocean

6.
83

6.
84

7.
28

7.
26

5.
10 4.
97

7.
68

7.
59 7.
38

7.
38

7.
95

7.
95

6.
56

6.
59

6.
78

6.
78

Figure 4: Normalized execution time for TCC with an
invalidate (I) and an update (U) protocol for 8 processors.
Execution time is normalized to sequential execution.
Speedups are printed above each bar.

Unlike capacity overflows, associativity overflows can
be common even with small read- and write-sets (e.g.,
tomcatv). Figure 3 shows the number of associative over-
flows in tomcatv, equake, andbarnes when varying
the L1 cache associativity and the victim cache size. The
count is normalized to runs with a 2-way set-associative
cache and no victim cache. Several applications did not ex-
perienced associativity overflows at all, but with a 4-way
cache, the performance of the three applications in Figure
3 was significantly impacted by costly overflows. A 16-
way cache virtually eliminates overflows, but such a design
would have a negative impact on clock frequency. The in-
troduction of a fully-associative victim cache can alleviate
the problem without increasing the cache associativity. A
4-way cache with an 8-entry victim cache eliminates the
vast majority of associativity overflows, with only 1% of
barnes’s overflows remaining. A 2-way cache is not suffi-
cient even with a 32-entry victim as there are a large number
of sets within transactions that require 3-way to 4-way as-
sociativity and exceed the capacity of the victim cache. The
remaining performance results assume a 4-way associative
cache with an 8-entry victim cache.

Figure 4 compares the performance of an update and in-
validate protocol for TCC commit in an 8 CPU system. De-
picted is execution time normalized to the sequential ver-
sions of the applications (lower is better). Execution time
has five components:Useful time spent executing instruc-
tions and the TCC API code,L1 Misstime spent stalling on
loads and stores,Committime spent waiting for the com-
mit token and committing the write set to shared mem-
ory, Idle time spent idle due to load imbalance, and finally
time spend due toViolations. The choice of protocol has
little impact on performance. Update provides minor per-

Li
ne

W
or

d

Li
ne

W
or

d

Li
ne

W
or

d

Li
ne

W
or

d

Li
ne

W
or

d

Li
ne

W
or

d

Li
ne

W
or

d

Li
ne

W
or

d

0

5

10

15

20

25

30

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(%
)

Useful

L1 Miss

Idle/Synch.

Commit/Comm.

Violations

barnes equake radix tomcatvmp3d waterswimocean

6.
90

6.
84

7.
26

4.
97

7.
59

7.
38

7.
95

6.
59

6.
78

7.
09

3.
72

7.
31

7.
15

7.
94 6.

57

6.
78

Figure 5: Normalized execution time for TCC with line-
and word-level state tracking. Speedups are printed
above each bar.

formance benefits in applications where updated words are
subsequently accessed. An invalidate protocol would force
thesere-touchedwords to be re-loaded from the memory
hierarchy. However, only two of our applications exhib-
ited such behavior:equake andmp3d. Formp3d, update
achieved a performance gain of only 2.5% over invalidate.
Forequake the difference is negligible as its high miss rate
(4.28%) masks all other performance bottlenecks. The per-
formance results use the invalidate protocol as we compare
against an invalidate-based SCC.

Figure 5 shows normalized execution time with word-
and line-level speculative state tracking. For most applica-
tions, performance was nearly identical. However, for ap-
plications with significant false sharing or cache-to-cache
transfers, likemp3d, there are additional spurious viola-
tions that negatively impact performance. Since it facilitates
a more robust programming environment, the remaining re-
sults use word-level granularity.

Double buffering can hide commit latency at the expense
of additional complexity. We do not present extensive re-
sults due to space limitations, but double buffering is some-
what useful for applications exhibiting significant commit
overhead, such asmp3d (6% improvement) andwater
(5% improvement) that have a low operations per word
written ratio. The remaining applications averaged a 1.9%
improvement because they either have high operations per
word written ratios or do not otherwise stress the available
bandwidth in the CMP system. The remaining results use
single buffering.

5.3 TCC vs. SCC

Figure 6 compares traditional snoopy cache coherence
(SCC) with transactional coherence and consistency (TCC)



T
C

C
-2

S
C

C
-2

T
C

C
-4

S
C

C
-4

T
C

C
-2

S
C

C
-2

T
C

C
-4

S
C

C
-4

T
C

C
-2

S
C

C
-2

T
C

C
-4

S
C

C
-4

T
C

C
-2

S
C

C
-2

T
C

C
-4

S
C

C
-4

T
C

C
-2

S
C

C
-2

T
C

C
-4

S
C

C
-4

T
C

C
-2

S
C

C
-2

T
C

C
-4

S
C

C
-4

T
C

C
-2

S
C

C
-2

T
C

C
-4

S
C

C
-4

T
C

C
-2

S
C

C
-2

T
C

C
-4

S
C

C
-4

T
C

C
-2

S
C

C
-2

T
C

C
-4

S
C

C
-4

0

10

20

30

40

50

60

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(%
) Useful L1 Miss Idle/Synch. Commit/Comm. Violations

barnes equake mp3d ocean radix swim tomcatv water SPECjbb

T
C

C
-8

S
C

C
-8

T
C

C
-1

6
S

C
C

-1
6

T
C

C
-8

S
C

C
-8

T
C

C
-1

6
S

C
C

-1
6

T
C

C
-8

S
C

C
-8

T
C

C
-1

6
S

C
C

-1
6

T
C

C
-8

S
C

C
-8

T
C

C
-1

6
S

C
C

-1
6

T
C

C
-8

S
C

C
-8

T
C

C
-1

6
S

C
C

-1
6

T
C

C
-8

S
C

C
-8

T
C

C
-1

6
S

C
C

-1
6

T
C

C
-8

S
C

C
-8

T
C

C
-1

6
S

C
C

-1
6

T
C

C
-8

S
C

C
-8

T
C

C
-1

6
S

C
C

-1
6

T
C

C
-8

S
C

C
-8

T
C

C
-1

6
S

C
C

-1
6

0

5

10

15

20

25

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e 

(%
)

barnes equake mp3d ocean radix swim tomcatv water SPECjbb

2.
32 2.

00
4.

69 4.
01

9.
28 8.

30
19

.1
4

16
.3

9

1.
81

1.
99

3.
51

3.
78

1.
93 1.
86

3.
76

3.
58

1.
81

1.
78

3.
24

3.
20

2.
00

2.
07

3.
86

4.
04

1.
96

1.
94

3.
85

3.
84

2.
00

2.
01

1.
96

2.
00

3.
98

4.
00 3.

48
3.

92

1.
82

1.
89

3.
52

3.
68

6.
84

7.
28

13
.1

7
13

.7
8

7.
26 7.
06

11
.6

9
10

.9
8

13
.9

7

5.
11

5.
29 5.
16

7.
53

7.
59

7.
77

13
.1

1
12

.1
2 7.

38
7.

49
12

.5
6

13
.8

7 7.
95

7.
79 6.

59

11
.1

1
10

.6
6 7.

23
9.

73 8.
98

6.
78

7.
24

12
.6

2
Figure 6: Normalized execution time for SCC and TCC as we scal e the number of processors from 2 to 16. Parallel
execution times are normalized to that of a single processor running the original sequential code. The top graph
contains runs for 2 and 4 processors and the bottom graph cont ains the 8 and 16 processor runs; values on the
vertical axis change appropriately. Speedups are printed a bove each bar.

as we scale the number of processors from 2 to 16. It shows
execution time normalized to sequential applications (lower
is better). Each TCC bar is broken into five components as
described in Section 5.2. The SCC bars are slightly differ-
ent:Synchronizationis time spent in barriers and locks, and
Communicationis stall time for cache-to-cache transfers.
SCC bars do not have violations. Note that the applications
are optimized individually for each model.

In general, SCC and TCC perform and scale similarly
on most applications up to 16 processors. This demon-
strates that continuous transactional execution does not in-
cur a significant performance penalty compared to conven-
tional techniques. Hence, it is worthwhile exploring the ad-
vantages it provides for parallel software development. For
some applications, as the number of processors increase,
time spent in locks and barriers make SCC perform poorly.
TCC also loses performance on some applications, but the
reasons vary. The differences are generally small, but each

application exhibits interesting characteristics:

barnes: It scales well on both TCC and SCC as it only
has a small amount of communication between proces-
sors.barnes has a high operations per word written ratio,
which helps TCC amortize the time spent communicating.

equake: The SCC version ofequake has significant syn-
chronization overhead caused by fine-grained locking to
regulate access to a sparse matrix [28]. The TCC version
does not require fine-grain lock insertion, but suffers from
occasional violations.equake is a good example of how
the simple TCC programming model provides performance
in the face of infrequent sharing.

mp3d: mp3d has a significant amount of communication
and false sharing. We use it as an example of an irregular
parallel program that is difficult to tune.mp3d scales well
up to 4 processors on both architectures, but false sharing
effects (cache-to-cache transfers) begin to grow at 8 proces-
sors on SCC. With SCC on 16 processors, cache-to-cache



T
C

C
S

C
C

T
C

C
S

C
C

T
C

C
S

C
C

T
C

C
S

C
C

T
C

C
S

C
C

T
C

C
S

C
C

T
C

C
S

C
C

T
C

C
S

C
C

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

B
us

 U
til

iz
at

io
n

Arbitrating

Sending

Idle

barnes equake radix tomcatvmp3d waterswimocean

Figure 7: Bus utilization breakdown for TCC and SCC
with 8 processors. The bus is 16-bytes wide.

transfers and idle time spent in barriers begin to dominate
execution time. In contrast, TCC avoids false sharing by
using word-level valid bits and so continues to scale even at
16 processors.
ocean: TCC and SCC perform similarly, but at 16 proces-
sors time spent in barriers begins to somewhat hinder scal-
ability on an SCC architecture.
radix : On SCC,radix scales well because of its low miss
rate and lack of barrier synchronization. The TCC version
suffers from load imbalance.
swim: Its execution time is dominated by the high L1 cache
miss rate (above 9.15%).swim scales similarly with both
architectures and with 16 processors is limited by data cache
misses that saturate the bus to the L2 cache.
tomcatv: SCC performs better for up to 8 processors due
to contention for the commit bus:tomcatv’s transaction
sizes are small and lead to frequent commits. With 16 pro-
cessors, SCC’s performance begins to lag due to synchro-
nization time spent in barriers; TCC’s speculative mecha-
nisms avoid some of this delay.
water: water has a tiny miss rate of 0.72%, which ensures
that both SCC and TCC scale well to 16 processors. Time
stalling for commit poses a small problem for TCC, because
the average transaction size is small at 927 instructions and
the write state is relatively large at 430 bytes.
SPECjbb: Both TCC and SCC scale well, achieving super-
linear speedup due to cache effects. TCC’s optimistic con-
currency avoids the significant time SCC spends in locks,
so TCC achieves better speedups.

Figure 7 presents the bus utilization for TCC and SCC
with 8 processors. Bars are split into three regions: one rep-
resenting the time for transmission of load, store and com-
mit data; one bar for arbitration time; and a final bar for idle
time. Though TCC uses additional bandwidth to commit all
data written, whether they are truly shared or not, the band-

width utilization never exceeds 55%. Even a bus-based in-
terconnect has sufficient bandwidth for this straight-forward
implementation of transactional execution. Inwater and
barnes, misses and L1 writebacks are rare, so committing
all written data makes TCC’s bandwidth usage much higher
than SCC’s. SCC consumes more bandwidth inmp3d be-
cause of its cache-to-cache transfers.equake has viola-
tions that cause additional memory traffic in TCC.

We also analyzed the performance of SCC and TCC as
we varied the available bandwidth on the bus (8, 16, or 32
bytes per cycle) and the bus pipelined latency for arbitra-
tion and transfer (1, 2, or 6 clock cycles). Neither affected
the comparison between TCC and SCC significantly. Both
schemes scaled similarly in all cases.

5.4 Discussion

In Section 5.3, we compare TCC to the conventional
SCC scheme with the MESI protocol [8]. Recently, re-
searchers have proposed two extensions to SCC that target
some of its performance bottlenecks.

Coherence decoupling (CD) [19] allows a processor to
use invalid data in the cache while coherence messages are
exchanged over the interconnect. This reduces the per-
formance impact of false sharing and silent stores. The
CD evaluation shows a 1% to 12% performance improve-
ment for SPLASH applications on a 16 processor SMP.
Speculative Synchronization (SS) [30, 26] allows a pro-
cessor to speculatively proceed past locks and barriers and
achieve the benefits of optimistic non-blocking synchro-
nization. It provides a 5% to 25% performance improve-
ment for SPLASH applications on a 16 processor SMP [30].

For the CMP environment in this study, false sharing,
silent stores, and synchronization pose smaller performance
challenges than with a SMP system, as the on-chip inter-
connect in a CMP has higher bandwidth and lower latency.
Hence, the benefits from CD and SS in a CMP will be sig-
nificantly lower and are unlikely to change the compari-
son between TCC and SCC. In addition, both CD and SS
require significant additional complexityon topof snoopy
cache control (speculative buffers and predictors). In con-
trast, TCC does away with all SCC hardware and imple-
ments the hardware presented in Section 2 to handle coher-
ence, optimistic synchronization, and false sharing with a
single mechanism.

In this paper, SCC uses sequential consistency and all
loads and stores from each processor in the TCC system are
strictly ordered. The use of a relaxed consistency model
would undoubtedly improve the performance of SCC [1].
Nevertheless, TCC would also improve as we can freely re-
order loads and stores within each transaction. In fact, TCC
with an out-of-order processor can be thought of as imple-
menting release consistency, with transaction begin and end
being acquire and release, respectively.



6. Related Work

There is a vast amount of prior research in the area
of shared memory multiprocessor cache coherence. The
research that is most relevant to this paper is concerned
with transactional coherence and the performance of snoopy
cache coherence protocols.

TCC uses transactions, a core concept in Database Man-
agement Systems (DBMS) [13] as a general programming
construct. TCC relies on the idea of optimistic concur-
rency [25]: controlling access to shared data without locks
by detecting conflicts and re-executing to ensure correct-
ness. TCC extends these database ideas to memory [16],
building on early transactional memory work done by Her-
lihy [18] as well as more recent work in Thread-Level Spec-
ulation (TLS) [35], and Stampede [38, 15, 24].

Most of the coherence schemes implemented in shared
memory multiprocessors are based on snoopy cache co-
herence [11]. Archibald and Baer [5] provide a survey of
snoopy protocols. Eggers [9] did an early study of data
sharing in multiprocessors and Agarwal et al. [2] com-
pare the performance of snoopy coherence schemes with
directory based schemes. More recently, researchers have
looked at combining speculation with conventional snoopy
cache coherence. For example, Martinez and Torrellas [26],
Rajwar and Goodman [30, 29], and Rundberg and Sten-
strom [33] have independently proposed how to speculate
through locks and barriers and Huh et al. have used specu-
lation to reduce the effect of false sharing [19].

7. Conclusions

We investigated the implementation and performance of
continuous transactions in TCC as compared to snoopy
cache coherence for chip-multiprocessors. Using nine opti-
mized parallel programs, we found that TCC’s performance
is comparable to that of conventional coherence and scales
well to 16 processors. We also showed that that despite
earlier evidence on the substantial bandwidth demands for
TCC, bandwidth utilization on bus-based CMPs was not a
hindrance to TCC scalability. We also studied implemen-
tation alternatives for TCC and showed that the choice of
snooping protocol has little impact on performance, a sim-
ple victim cache can avoid most associative overflows, sin-
gle buffering provides acceptable performance for most ap-
plications, and speculative state should be tracked at word
level.

Overall, TCC provides excellent parallel performance
for optimized applications in addition to the simpler parallel
programming model.

8. Acknowledgments
This research was sponsored by the Defense Advanced

Research Projects Agency (DARPA) through the Depart-
ment of the Interior National Business Center under grant
number NBCH104009. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA) or the U.S. Government.

Additional support was also available through NSF grant
0444470.

References
[1] S. V. Adve, V. S. Pai, and P. Ranganathan. Recent advances

in memory consistency models for hardware shared memory
systems. Proc. of the IEEE, Special Issue on Distributed
Shared Memory, 87(3):445–455, 1999.

[2] A. Agarwal, J. L. Hennessy, R. Simoni, and M. A. Horowitz.
An evaluation of directory schemes for cache coherence. In
Proceedings of the 15th International Symposium on Com-
puter Architecture, pages 280–289, 1988.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mer-
gen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The Jalapeño virtual machine.IBM Systems Jour-
nal, 39(1):211–238, 2000.

[4] S. Ananian, K. Asanovic, et al. Unbounded transactional
memory. In Proceedings of the 11th International Sym-
posium on High Performance Computer Architecture, Feb.
2005.

[5] J. Archibald and J. L. Baer. Cache coherence protocols:
Evaluation using a multiprocessor simulation mode.ACM
Transactions on Computer Systems, pages 273–298, Nov.
1986.

[6] L. Barroso, K. Gharachorloo, et al. Piranha: A scalable ar-
chitecture based on single-chip multiprocessing. InProceed-
ings of the 27th Annual International Symposium on Com-
puter Architecture, Vancouver, Canada, June 2000.

[7] H. Chafi, C. C. Minh, A. McDonald, B. D. Carlstrom,
J. Chung, L. Hammond, C. Kozyrakis, and K. Olukotun.
TAPE: A transactional application profiling environment. In
Proceedings of the 19th ACM International Conference on
Supercomputing, June 2005.

[8] D. Culler, J. P. Singh, and A. Gupta.Parallel Computer Ar-
chitecture. Morgan Kauffman, 1999.

[9] S. Eggers. Simulation Analysis of Data Sharing in Shared
Memory Multiprocessors. PhD thesis, University of Califor-
nia, Berkeley, 1989.

[10] M. Garzaran, M. Prvulovic, et al. Tradeoffs in buffering
multi-version memory state for speculative thread-level par-
allelization in multiprocessors. InProceedings of the 9th In-
ternational Symposium on High Performance Computer Ar-
chitecture, Feb. 2003.



[11] J. R. Goodman. Using cache memory to reduce processor
memory traffic. InProceedings International Symposium on
Computer Architecture, pages 124–131, 1983.

[12] S. Gopal, T. Vijaykumar, J. E. Smith, and G. S. Sohi. Spec-
ulative versioning cache. InProceedings of the Fourth Inter-
national Symposium on High-Performance Computer Archi-
tecture, Feb. 1998.

[13] J. Gray and A. Reuter.Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[14] L. Hammond, B. D. Carlstrom, V. Wong, B. Hertzberg,
M. Chen, C. Kozyrakis, and K. Olukotun. Programming with
transactional coherence and consistency. InProceedings of
the 11th International Conference on Architecture Support
for Programming Languages and Operating Systems, Oct.
2004.

[15] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and
K. Olukotun. The Stanford Hydra CMP.IEEE MICRO Mag-
azine, March–April 2000.

[16] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and con-
sistency. InProceedings of the 31st International Symposium
on Computer Architecture, pages 102–113, June 2004.

[17] T. Harris and K. Fraser. Language support for lightweight
transactions. InProceedings of the 18th Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, Oct. 2003.

[18] M. Herlihy and J. E. B. Moss. Transactional memory: Archi-
tectural support for lock-free data structures. InProceedings
of the 20th International Symposium on Computer Architec-
ture, pages 289–300, 1993.

[19] J. Huh, J. Chang., D. Burger., and G. Sohi. Coherence de-
coupling: Making use of incoherence. InProceedings of the
11th International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2004.

[20] JBus architecture overview. Technical report, Sun Microsys-
tems, Apr. 2003.

[21] N. Jouppi. Improving direct-mapped cache performanceby
the addition of a small fully-associative cache and prefetch
buffers. InProceedings of the International Symposium on
Computer Architecture, May 1990.

[22] R. Kalla et al. Simultaneous multi-threading implementation
in POWER5. InConference Record of Hot Chips 16, Stan-
ford, CA, Aug. 2003.

[23] P. Kongetira. A 32-way multithreaded Sparc processor.In
Conference Record of Hot Chips 16, Stanford, CA, Aug.
2004.

[24] V. Krishnan and J. Torrellas. A chip multiprocessor archi-
tecture with speculative multithreading.IEEE Transactions
on Computers, Special Issue on Multithreaded Architecture,
Sept. 1999.

[25] H. T. Kung and J. T. Robinson. On optimistic methods for
concurrency control.ACM Transactions on Database Sys-
tems, 6(2), June 1981.

[26] J. Martinez and J. Torrellas. Speculative synchronization:
Applying thread-level speculation to parallel applications. In
Proceedings of the 10th International Conference on Archi-
tectural Support for Programming Languages and Operating

Systems, Oct. 2002.
[27] C. McNairy. Montecito: The next product in the Itanium

Processor Family. InConference Record of Hot Chips 16,
Stanford, CA, Aug. 2004.

[28] D. O’Hallaron. Spark98: Sparse matrix kernels for shared
memory and message passing systems. Technical Report
CMU-CS-97-178, School of Computer Science, Carnegie
Mellon University, Oct. 1997.

[29] R. Rajwar and J. Goodman. Speculative Lock Elision: en-
abling highly concurrent multithreaded execution. InMI-
CRO 34: Proceedings of the 34th ACM/IEEE International
Symposium on Microarchitecture, pages 294–305. IEEE
Computer Society, 2001.

[30] R. Rajwar and J. Goodman. Transactional lock-free exe-
cution of lock-based programs. InProceedings of the 10th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Oct. 2002.

[31] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. InProceedings of the 32nd International Sympo-
sium on Computer Architecture, June 2005.

[32] L. Rauchwerger and D. Padua. LRPD test: Speculative run-
time parallelization of loops with privatization and reduc-
tion parallelization. InProceedings of the Conference on
Programming Language Design and Implementation, June
1995.

[33] P. Rundberg and P. Stenstrom. Reordered speculative execu-
tion of critical sections. InProceedings of the 2002 Interna-
tional Conference on Parallel Processing, Feb. 2002.

[34] J. P. Singh, W. Weber, and A. Gupta. Splash: Stanford paral-
lel applications for shared-memory.Computer Architecture
News, 20(1).

[35] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar pro-
cessors. InProceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 414–425, June
1995.

[36] Standard Performance Evaluation Corporation, SPEC CPU
Benchmarks. http://www.specbench.org/, 1995–2000.

[37] Standard Performance Evaluation Corporation,
SPECjbb2000 Benchmark. http://www.spec.org/jbb2000/,
2000.

[38] J. Steffan and T. Mowry. The potential for using thread-level
data speculation to facilitate automatic parallelization. In
Proceedings of the Fourth International Symposium on High-
Performance Computer Architecture, Las Vegas, Nevada,
1998.

[39] P. Sweazy and A. J. Smith. A class of compatible cache con-
sistency protocols and their support by the IEEE futurebus.
In Proceedings of the 13th Symposium on Computer Archi-
tecture, pages 1056–1072, 1986.

[40] S.Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash2 programs: Characterization and methodologi-
cal considerations. InProceedings of the 22nd International
Symposium on Computer Architecture, pages 24–36, June
1995.


